

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org [www.elsevier.com/locate/joems](http://www.sciencedirect.com/science/journal/1110256X)

ORIGINAL ARTICLE

The metrizability of L-topological groups

Fatma Bayoumi *, Ismail Ibedou ¹

Department of Mathematics, Faculty of Sciences, Benha University, Benha 13518, Egypt

Received 19 November 2012; revised 9 March 2013; accepted 20 March 2013 Available online 20 May 2013

KEYWORDS

Countable L-filters; Countable L-topological spaces; L-topological groups; Separated L-topological groups; L-metric spaces; L-pseudo-metric spaces

Abstract In this study, we study the metrizability of the notion of L-topological group defined by Ahsanullah 1988. We show that for any (separated) L-topological group there is an L-pseudo-metric (L -metric), in sense of Gähler which is defined using his notion of L -real numbers, compatible with the L-topology of this (separated) L-topological group. That is, any (separated) L-topological group is pseudo-metrizable (metrizable).

2000 MATHEMATICS SUBJECT CLASSIFICATION: 54A40

ª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

The notion of L-real numbers is defined and studied by S. Gähler and W. Gähler in [\[1\]](#page-5-0). \mathbf{R}_L denotes the set of all *L*-real numbers. The subset \mathbf{R}_{L}^{*} of \mathbf{R}_{L} of all positive *L*-real numbers is used to define the L -pseudo-metric (L -metric) on a set X , by the same authors in [\[1\]](#page-5-0), as a mapping of the cartesian product $X \times X$ to \mathbb{R}_L^* which satisfying similar conditions to the conditions of the usual metric. In this paper we study the metrizability, using the L-pseudo-metric (L-metric) in sense of [\[1\],](#page-5-0) of a notion of L-topological group which is introduced

Peer review under responsibility of Egyptian Mathematical Society.

E. SEVIER **Production and hosting by Elsevier** in [\[2\]](#page-5-0) and studied in [\[3\].](#page-5-0) This L-topological groups is defined as a group equipped with an L-topology such that both the binary operation and the unary operation of the inverse are Lcontinuous with respect to this L-topology.

In this paper, using the uniformizability of L-topological groups introduced by the authors in [\[4\],](#page-5-0) we show that any (separated) L-topological group is pseudo-metrizable (metrizable). In [\[4\]](#page-5-0) is used the L-uniform structures which are defined in [\[5\]](#page-5-0) on a set X , in a similar way to the usual case, as L -filters on $X \times X$.

In Section 2 of this paper we recall some results on L-filters, L-real numbers defined by Gähler in $[1,6–8]$, and some separation axioms defined by the authors in [\[9–12\].](#page-5-0)

Sections 3 and 4 introduce and show some results on L-metric and L-uniform spaces, respectively, which are needed to show the metrizability of L-topological groups. We will use the notion of L-topogenous structure [\[13\]](#page-5-0).

In Section 5 we show that the L -pseudo-metric (L -metric), in sense of [\[1\]](#page-5-0), induces the L-topology of a (separated) L-topological group, that is, any (separated) L-topological group is pseudo-metrizable (metrizable).

1110-256X ª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. <http://dx.doi.org/10.1016/j.joems.2013.03.012>

^{*} Corresponding author.

E-mail address: fatma_bayoumi@hotmail.com (F. Bayoumi).

¹ Present address: Department of Mathematics, Faculty of Science, Jazan University, KSA.

2. On L-filters

Recall here some ideas concerning L-filters needed in the paper. Denote by L^X the set of all L-subsets of a non-empty set X , where L is a complete chain with different least and greatest elements 0 and 1, respectively [\[14\].](#page-5-0) Let $L_0 = L \setminus \{0\}$ and $L_1 = L \setminus \{1\}$. For each L-set $\lambda \in L^X$, let λ' denote the complement of λ , defined by $\lambda'(x) = \lambda(x)$ for all $x \in X$. For all $x \in X$ and $\alpha \in L_0$, the L-subset x_α of X whose value α at x and 0 otherwise is called an L -point in X and the constant L-subset of X with value α will be denoted by $\bar{\alpha}$.

L-filters. By an *L*-filter on a non-empty set X we mean [\[7\]](#page-5-0) a mapping $\mathcal{M}: L^X \to L$ such that $\mathcal{M}(\bar{\alpha}) \leq \alpha$ for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and also $\mathcal{M}(\lambda \wedge \mu) = \mathcal{M}(\lambda) \wedge \mathcal{M}(\mu)$ for all λ , $\mu \in L^X$. M is called *homogeneous* [\[7\]](#page-5-0) if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. If M and N are L-filters on X, M is called *finer than* N, denoted by $M \succ N$, provided $M(\lambda) \ge N(\lambda)$ holds for all $\lambda \in L^X$. By $\mathcal{M} \neq \mathcal{N}$ we mean that M is not finer than N. Since L is a complete chain, then

 $M \not\vdash \mathcal{N} \Longleftrightarrow$ there is $f \in L^X$ such that $\mathcal{M}(f) < \mathcal{N}(f)$.

Let $\mathcal{F}_L X$ denote the set of all *L*-filters on *X*, *f*: *X* \rightarrow *Y* a mapping and M, N are *L*-filters on *X*, *Y*, respectively. Then the *image* of M and the *preimage* of N with respect to f are the *L*-filters $\mathcal{F}_L f(\mathcal{M})$ on Y and $\mathcal{F}_L^-(\mathcal{N})$ on X defined by $\mathcal{F}_L f(\mathcal{M}) (\mu) = \mathcal{M}(\mu \circ f)$ for all $\mu \in L^Y$ and $\mathcal{F}_L^T f(\mathcal{N})(\lambda) = \bigvee_{\mu \circ f \leq \lambda} \mathcal{N}(\mu)$ for all $\lambda \in L^X$, respectively. For each mapping $f: X \to Y$ and each L-filter N on Y, for which the preimage $\mathcal{F}_L^{-}f(\mathcal{N})$ exists, we have $\mathcal{F}_L f(\mathcal{F}_L^{-}f(\mathcal{N})) \succ \mathcal{N}$. Moreover, for each *L*-filter *M* on *X*, the inequality $M \succ \mathcal{F}_L^-(\mathcal{F}_Lf(M))$ holds [\[7\]](#page-5-0).

For any set A of L-filters on X, the infimum $\bigwedge_{\mathcal{M}\in A}\mathcal{M}$, with respect to the finer relation on L-filters, does not exist in general. The infimum $\bigwedge_{M\in A}\mathcal{M}$ of A exists *if and only if* for each non-empty finite subset $\{M_1, \ldots, M_n\}$ of A we have $\mathcal{M}_1(\lambda_1) \wedge \cdots \wedge \mathcal{M}_n(\lambda_n) \leqslant \sup(\lambda_1 \wedge \cdots \wedge \lambda_n)$ for all $\lambda_1, \ldots,$ $\lambda_n \in L^X$ [\[6\]](#page-5-0). If the infimum of A exists, then for each $\lambda \in L^X$ and n as a positive integer we have

$$
\left(\bigwedge_{\mathcal{M}\in\mathcal{A}}\mathcal{M}\right)(\lambda)=\bigvee_{\lambda_1\wedge\cdots\wedge\lambda_n\leq\lambda, \atop \mathcal{M}_1,\ldots,\mathcal{M}_n\in\mathcal{A}}(\mathcal{M}_1(\lambda_1)\wedge\cdots\wedge\mathcal{M}_n(\lambda_n)).
$$

By a *filter* on X we mean a non-empty subset F of L^X which does not contain $\bar{0}$ and closed under finite infima and super sets [\[15\]](#page-5-0). For each *L*-filter *M* on *X*, the subset α – pr *M* of L^X defined by: $\alpha - pr \mathcal{M} = {\lambda \in L^X | \mathcal{M}(\lambda) \geq \alpha}$ is a filter on X.

A family $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ of non-empty subsets of L^X is called valued L-filter base on X [\[7\]](#page-5-0) if the following conditions are fulfilled:

(V1) $\lambda \in \mathcal{B}_{\alpha}$ implies $\alpha \leq \sup \lambda$.

(V2) For all $\alpha, \beta \in L_0$ and all L-sets $\lambda \in \mathcal{B}_\alpha$ and $\mu \in \mathcal{B}_\beta$, if even $\alpha \wedge \beta \geq 0$ holds, then there are a $\gamma \geq \alpha \wedge \beta$ and an *L*-set $v \leq \lambda \wedge \mu$ such that $v \in \mathcal{B}_{\gamma}$.

Each valued L-filter base $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ on a set X defines an Lfilter M on X by: $M(\lambda) = \bigvee_{\mu \in B_{\alpha}, \mu \leq \lambda} \alpha$ for all $\lambda \in L^X$. On the other hand, each L -filter M can be generated by many valued L-filter bases, and among them the greatest one $(\alpha - \text{pr }\mathcal{M})_{\alpha \in L_0}.$

L-neighborhood filters. In the following, the topology in sense of [\[16,17\]](#page-5-0) will be used which will be called L-topology. \int int_r and cl_r denote the interior and the closure operators with respect to the L-topology τ , respectively. For each L-topological space (X, τ) and each $x \in X$ the mapping $\mathcal{N}(x) : L^X \to L$ defined by: $\mathcal{N}(x)(\lambda) = \int \int_0^{\lambda} f(x) \, dx$ for all $\lambda \in L^X$ is an L-filter on X, called the L-neighborhood filter of the space (X, τ) at x, and the mapping $\dot{x} : L^X \to L$ defined by $\dot{x}(\lambda) = \lambda(x)$ for all $\lambda \in L^X$ is a homogeneous L-filter on X. The L-neighborhood filters fulfill the following conditions:

(N1) $\dot{x} > \mathcal{N}(x)$ holds for all $x \in X$;

(N2)
$$
(\mathcal{N}(x))(\text{int}_\tau f) = (\mathcal{N}(x))(f)
$$
 for all $x \in X$ and $f \in L^X$.

Let (X, τ) and (Y, σ) be two *L*-topological spaces. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ is called L-continuous (or (τ, σ) -con*tinuous*) provided $int_{\sigma}\mu \circ f \leq int_{\tau}(\mu \circ f)$ for all $\mu \in L^Y$ [\[8\]](#page-5-0).

The L-neighborhood filter $\mathcal{N}(F)$ at an ordinary subset F of X is the L-filter on X defined, by the authors in [\[10\]](#page-5-0), by means of $\mathcal{N}(x)$, $x \in F$ as: $\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x)$. The *L*-filter *F* is defined by: $\vec{F} = \bigvee_{x \in F} \vec{x}$. $\vec{F} \succ \mathcal{N}(F)$ holds for all subsets F of X. Recall also here the L-filter λ and the L-neighborhood filter $\mathcal{N}(\lambda)$ at an L-subset λ of X which are defined by

$$
\dot{\lambda} = \bigvee_{0 < \lambda(x)} \dot{x} \quad \text{and} \quad \mathcal{N}(\lambda) = \bigvee_{0 < \lambda(x)} \mathcal{N}(x),\tag{2.1}
$$

respectively. $\lambda \succ \mathcal{N}(\lambda)$ holds for all $\lambda \in L^X$ [\[18\].](#page-5-0)

 L -real numbers. By an L -real number is meant [\[1\]](#page-5-0) a convex, normal, compactly supported and upper semi-continuous Lsubset of the set of all real numbers R. The set of all L-real numbers is denoted by \mathbf{R}_L . **R** is canonically embedded into **, identifying each real number** *a* **with the crisp** *L***-number** a^{\sim} defined by $a^{\sim}(\xi) = 1$ if $\xi = a$ and 0 otherwise. The set of all positive L-real numbers is defined and denoted by: $\mathbf{R}_L^* = \{x \in \mathbf{R}_L | x(0) = 1 \text{ and } 0^\sim \leq x\}$ and let $I_L = \{x \in \mathbb{R}_L^* | x \le 1^\circ\}$, where $I = [0, 1]$ is the real unit interval. Note that we mean here by \leq the binary operation on \mathbf{R}_L defined by

$$
x \leq y \iff x_{\alpha_1} \leq y_{\alpha_1} \quad \text{and} \quad x_{\alpha_2} \leq y_{\alpha_2}
$$

for all $x, y \in \mathbf{R}_L$ where $x_{\alpha_1} = \inf\{z \in \mathbf{R} | x(z) \ge \alpha\}$ and $x_{\alpha_2} = \sup\{z \in \mathbf{R} | x(z) \ge \alpha\}$ for all $x \in \mathbf{R}_L$ and for all $\alpha \in L_0$. It is shown in [\[7\]](#page-5-0) that the class ${R_\delta|}_{I_L} |\delta \in I \} \cup {R^\delta|}_{I_L} |\delta \in I \} \cup {0^\sim|}_{I_L}$ is a base for an *L*-topology $\tilde{\mathfrak{I}}$ on I_L , where \tilde{R}^{δ} and R_{δ} are the L-subsets of \mathbf{R}_L defined by $R_\delta(x) = \bigvee_{\alpha > \delta} x(\alpha)$ and $R^\delta(x) = (\bigvee_{\alpha \ge \delta} x(\alpha))'$ for all $x \in \mathbf{R}_L$ and $\delta \in \mathbf{R}$ and note that $R_{\delta}|_{I_L}, R^{\delta}|_{I_L}$ are the restrictions of R_{δ} , R^{δ} on I_L , respectively. Recall also that $x \pm y$ are *L*-real numbers defined by $(x \pm y)(\xi) = \bigvee_{\eta, \zeta \in \mathbf{R}, \eta \pm \zeta = \xi}(x(\eta) \wedge y(\zeta))$ for all $\xi \in \mathbf{R}$. (\mathbf{R}_L , +) is a commutative semi group with identity element 0^{\sim} . The positive part x^{+} of an *L*-real number x is defined as $x^+ = 0^\sim \vee x$, where

$$
x - x = 0^{\sim}, \quad (x + y)^{+} \leq x^{+} + y^{+}.
$$
 (2.2)

 GT_i -spaces. An *L*-topological space (X, τ) is called [\[9,11\]:](#page-5-0)

- (1) GT_0 if for all x, $y \in X$ with $x \neq y$ we have $\dot{x} \neq \mathcal{N}(y)$ or $v \not\!\rightarrow\! \mathcal{N}(x)$.
- (2) GT_1 if for all x, $y \in X$ with $x \neq y$ we have $\dot{x} \neq \mathcal{N}(y)$ and $y \not\succ \mathcal{N}(x)$.
- (3) completely regular if for all $x \notin F$ and $F = cl_rF$, there exists an *L*-continuous mapping $f : (X, \tau) \to (I_L, \mathfrak{I})$ such that $f(x) = \overline{1}$ and $f(y) = \overline{0}$ for all $y \in F$.
- (4) $GT_{3\frac{1}{2}}$ (or *L-Tychonoff*) if it is GT_1 and completely regular.

Proposition 2.1 ([9–12](#page-5-0)). Every GT_i -space is GT_{i-1} -space for all $i = 1, 2, 3, 4, 5, 6$. Moreover, the implications between GT_{3} spaces, GT_{3} -spaces and GT_{4} -spaces goes as expected. 2

3. Some results on L-metric spaces

A mapping $\varrho: X \times X \to \mathbf{R}_{L}^{*}$ is called an *L*-metric [\[1\]](#page-5-0) on *X* if the following conditions are fulfilled:

- (1) $\rho(x, y) = 0^\infty$ if and only if $x = y$
- (2) $Q(x, y) = Q(y, x)$
- (3) $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$.

If ϱ : $X \times X \to \mathbf{R}_L^*$ satisfies the conditions (2) and (3) and the following condition:

(1)' $\rho(x, y) = 0$ " if $x = y$

then it is called an L-pseudo-metric on X.

A set X equipped with an L -pseudo-metric (L -metric) ρ on X is called an L -pseudo-metric (L -metric) space.

To each *L*-pseudo-metric (*L*-metric) ρ on a set *X* is generated canonically a stratified L-topology τ_{ρ} on X which has $\{\varepsilon \circ \varrho_x | \varepsilon \in \mathcal{E}, x \in X\}$ as a base, where $\varrho_x : X \to \mathbf{R}_L^*$ is the mapping defined by $\varrho_x(y) = \varrho(x, y)$ and

$$
\mathcal{E} = \{ \bar{\alpha} \wedge R^{\delta} |_{\mathbf{R}_{L}^{*}} | \delta > 0, \alpha \in L \} \cup \{ \bar{\alpha} | \alpha \in L \},\
$$

here $\bar{\alpha}$ has \mathbf{R}_{L}^{*} as domain.

An *L*-topological space (X, τ) is called *pseudo-metrizable* (*metrizable*) if there is an *L*-pseudo-metric (*L*-metric) ρ on *X* inducing τ , that is, $\tau = \tau_{\varrho}$.

An L -pseudo-metric ρ is called *left* (right) invariant if

 $\rho(x, y) = \rho(ax, ay)(\rho(x, y) = \rho(xa, ya)$ for all $a, x, y \in X$.

An *L*-set $\lambda \in L^X$ is called *countable (finite)* if its support is countable (finite), where the support of λ is the set ${x \in X \mid 0 \leq \lambda(x)}.$

Let us call an L -filter M on a set X countable if the sets α – prM are countable for all $\alpha \in L_0$.

Definition 3.1. An *L*-topological space (X, τ) is called first *countable* if every point $x \in X$ has a countable *L*-neighborhood filter $\mathcal{N}(x)$.

Proposition 3.1. For any L-pseudo-metric ϱ on a set X, if τ_{ϱ} is the L-topology associated with ϱ , then (X, τ_{ϱ}) is a first countable space.

Proof. Since $\{\varepsilon \circ \varrho_x | \varepsilon \in \mathcal{E}, x \in X\}$ is a base for τ_{ϱ} , then for all $n \in \mathbb{N}$, the set $B_n = \{ \varepsilon_n \circ \varrho_x | \varepsilon_n \in \mathcal{E}, x \in X \}$, where $\varepsilon_n = \frac{1}{n} \wedge R^{\delta} |_{\mathbf{R}_{L}^*}$, is the $\frac{1}{n} - \text{pr } \mathcal{N}(x)$, which implies that there exists a countable L-neighborhood filter $\mathcal{N}(x)$ at every point $x \in X$. Hence, (X, τ_0) is a first countable space. \Box

By an *L*-function family Φ on a set *X*, we mean the set of all L-real functions $f: X \to I_L$.

We also have the following results.

Lemma 3.1. Let Φ be an L-function family on X and σ_f : $X \times X \rightarrow I_L$ a mapping defined by

$$
\sigma_f(x, y) = (f(x) - f(y))^+, \quad f \in \Phi.
$$

Then σ_f is an L-pseudo-metric on X.

Proof. Clearly, $\sigma_f(x, y) = \sigma_f(y, x)$. From [\(2.1\),](#page-1-0) we get that $\sigma_f(x, x) = (f(x) - f(x))^+ = 0$ for all $x \in X$, and moreover

$$
\sigma_f(x, y) = (f(x) - f(y))^+ \le (f(x) - f(z))^+ + (f(z) - f(y))^+
$$

= $\sigma_f(x, z) + \sigma_f(z, y).$

Hence, σ_f is an *L*-pseudo-metric on *X*. \Box

Lemma 3.2. Let $\sigma_i: X \times X \rightarrow I_L$, $i \in I$ be an arbitrary set of Lpseudo-metrics on the set X. Then

$$
\sigma(x, y) = \sup \{ \sigma_i(x, y) | i \in I \}
$$

defines an L-pseudo-metric on X as well.

Proof. Only the triangle inequality has to be shown. For all x , $y, z \in X$ and all $i \in I$, we have

 $\sigma_i(x, y) \leq \sigma_i(x, z) + \sigma_i(z, y) \leq \sigma(x, z) + \sigma(z, y),$

and then $\sigma(x, y) \le \sigma(x, z) + \sigma(z, y)$. Hence, σ is an *L*-pseudometric on X . \Box

Here, we have shown this fact.

Lemma 3.3. Any L-pseudo-metric Q on a set X is an L-metric on X if and only if (X, τ_{ϱ}) is a GT₀-space.

Proof. Let x, $y \in X$ and $y \neq x$. Since (X, τ_0) is a GT_0 -space, then there exists $\mu \in L^X$ such that $\mu(x) < \beta \leq \text{int}_{\tau_\rho} \mu(y)$ for some $\beta \in L_0$. From the definition of the base of τ_{ϱ} , since

$$
\mathrm{int}_{\tau_{\varrho}} \mu(z) = \overline{\alpha} \wedge R^{\delta} \vert_{\mathbf{R}_{L}^{*}} (\varrho(x, z)) = \alpha \wedge (\bigvee_{\eta \geq \delta} \varrho(x, z)(\eta))'
$$

for all $z \in X$ and for some $\alpha \in L$, then $\varrho(x, y) = 0$ [~] implies that $\int \int \text{int}_{\tau_0} \mu(y) = \alpha \wedge 1 = \alpha$ for all $y \in X$ and all $\mu \in L^X$. Hence,

 $\alpha = \text{int}_{\tau_o} \mu(x) \leq \mu(x) < \beta \leq \text{int}_{\tau_o} \mu(y) = \alpha,$

that is, $\alpha < \beta \le \alpha$ which is a contradiction, and thus $x = y$ and ρ is an *L*-metric.

Now let $x \neq y$ and so $\rho(x, y) \neq 0^{\infty}$, then there exists $\alpha > 0$ such that $\varrho(x, y)(\alpha) > 0$ and hence taking $v = \overline{1} \wedge R^{\delta} |_{\mathbf{R}_{L}^{*}} \circ \varrho_{x} \in L^{X}$, we get that

$$
v(y) = 1 \wedge R^{\delta}(\varrho(x, y)) = 1 \wedge (\bigvee_{\eta \geq \delta} \varrho(x, z)(\eta))' < 1
$$

whenever δ is chosen to be a very small number tends to zero. But $\int_0^{\pi} \text{dist}(x) dx = 1 \wedge (\bigvee_{\eta \geq \delta} \varrho(x, x)(\eta))' = 1$. Hence, (X, τ_Q) is a GT_0 -space. \Box

4. On L-uniform spaces

An *L*-filter *U* on $X \times X$ is called *L*-uniform structure on *X* [\[5\]](#page-5-0) if the following conditions are fulfilled:

$$
(U1) (x,x) > \mathcal{U} \text{ for all } x \in X;
$$

(U2) $U = U^{-1}$; (U3) $U \circ U \succ U$.

Where $(x, x)(u) = u(x, x), \quad U^{-1}(u) = U(u^{-1})$ and $(U \circ U)(u) = \bigvee_{v \circ w \leq u} (U(w) \wedge V(v))$ for all $u \in L^{X \times X}$, and $u^{-1}(x,$ $y) = u(y, x)$ and $(v \circ w)(x, y) = \bigvee_{z \in X} (w(x, z) \land v(z, y))$ for all $x, y \in X$.

A set X equipped with an L-uniform structure U is called an L-uniform space. A mapping $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$ between Luniform spaces (X, \mathcal{U}) and (Y, \mathcal{V}) is said to be *L*-uniformly continuous (or (U, V) -continuous) provided

$$
\mathcal{F}_L(f \times f)(\mathcal{U}) \succ \mathcal{V}
$$

holds. To each *L*-uniform structure U on *X* is associated a stratified L-topology $\tau_{\mathcal{U}}$. The related interior operator int_u is given by:

 $(int_{\mathcal{U}}\lambda)(x) = \mathcal{U}[\dot{x}](\lambda)$

for all $x \in X$ and all $\lambda \in L^X$, where $\mathcal{U}[\dot{x}](\lambda) =$ $\bigvee_{u[\mu]\leq\lambda} (\mathcal{U}(u)\wedge \mu(x))$ and $u[\mu](x) = \bigvee_{y\in X} (\mu(y)\wedge \mu(y, x)).$ For all $x \in X$ and all $\lambda \in L^X$ we have

$$
\mathcal{U}[\dot{x}] = \mathcal{N}(x) \quad \text{and} \quad \mathcal{U}[\dot{\lambda}] = \mathcal{N}(\lambda),
$$

where $\mathcal{N}(x)$ and $\mathcal{N}(\lambda)$ are the L-neighborhood filters of the space $(X, \tau_{\mathcal{U}})$ at x and λ , respectively.

Let U be an L-uniform structure on a set X. Then $u \in L^{X \times X}$ is called a *surrounding* provided $U(u) \ge \alpha$ for some $\alpha \in L_0$ and $u = u^{-1}$. A surrounding $u \in L^{X \times X}$ is called *left (right) invariant* provided

$$
u(ax, ay) = u(x, y)(u(xa, ya) = u(x, y))
$$
 for all $a, x, y \in X$.

 U is called a *left* (right) invariant L-uniform structure if U has a valued L-filter base consists of left (right) invariant surroundings [\[4\]](#page-5-0).

L-topological groups. In the following we focus our study on a multiplicative group G . We denote, as usual, the identity element of G by e and the inverse of an element a of G by a^{-1} . Let G be a group and τ an *L*-topology on G. Then (G, τ) will be called an L-topological group [\[2\]](#page-5-0) if the mappings

$$
\pi
$$
: $(G \times G, \tau \times \tau) \rightarrow (G, \tau)$ defined by $\pi(a, b) = ab$ for all $a, b \in G$

and

$$
i:(G,\tau) \to (G,\tau)
$$
 defined by $i(a) = a^{-1}$ for all $a \in G$

are L-continuous. π and i are the binary operation and the unary operation of the inverse on G, respectively.

For all $\lambda \in L^G$, the inverse λ^i of λ with respect to the unary operation i on G is the L-set $\lambda \circ i$ in G defined by [\[4\]](#page-5-0)

$$
\lambda^{i}(x) = \lambda(x^{-1}) \text{ for all } x \in G.
$$

Example 4.1. For a group G, the induced L-topological space $(G, \omega_L(T))$ of the usual topological group (G, T) is an Ltopological group.

$$
\mathcal{U}^{l}(u) = \bigvee_{v \in \mathcal{U}^{l}_{x}, v \leq u} \alpha \quad \text{and} \quad \mathcal{U}^{r}(u) = \bigvee_{v \in \mathcal{U}^{r}_{x}, v \leq u} \alpha, \tag{4.1}
$$

identity element e of (G, τ) , as follows:

where

$$
\mathcal{U}'_{\alpha} = \alpha - \text{pr } \mathcal{U}' \quad \text{and} \quad \mathcal{U}'_{\alpha} = \alpha - \text{pr } \mathcal{U}' \tag{4.2}
$$

are defined by

$$
\mathcal{U}'_a = \{ u \in L^{G \times G} | u(x, y) = (\lambda \wedge \lambda^i)(x^{-1}y) \text{ for some } \lambda \in \alpha - \text{pr } \mathcal{N}(e) \}
$$
\n(4.3)

and

$$
\mathcal{U}'_{\alpha} = \{ u \in L^{G \times G} | u(x, y) = (\lambda \wedge \lambda^{i})(xy^{-1}) \text{ for some } \lambda \in \alpha - \text{ pr } \mathcal{N}(e) \}
$$
\n(4.4)

We should notice that we shall fix the notations \mathcal{U}^l , \mathcal{U}^r , \mathcal{U}^l , and \mathcal{U}_{α}^{r} along the paper to be these defined above.

Remark 4.1. For the *L*-topological group (G, τ) , the elements u of $\mathcal{U}_{\alpha}^{l}(\mathcal{U}_{\alpha}^{r})$ are left (right) invariant surroundings. Moreover, $(\mathcal{U}_{\alpha}^{l})_{\alpha\in L_0}((\mathcal{U}_{\alpha}^{r})_{\alpha\in L_0})$ is a valued L-filter base for the left (right) invariant L-uniform structure $\mathcal{U}^l(\mathcal{U}^r)$ defined by (4.1), (4.2), (4.3), (4.4), respectively.

L-topogenous orders. A binary relation on L^X is said to be an L-topogenous order on $X[13]$ $X[13]$ if the following conditions are fulfilled:

- (1) $\bar{0} \ll \bar{0}$ and $\bar{1} \ll \bar{1}$;
- (2) λ μ implies $\lambda \leq \mu$;
- (3) $\lambda_1 \leq \lambda \mu \leq \mu_1$ implies $\lambda_1 \mu_1$;
- (4) From λ_1 μ_1 and λ_2 μ_2 it follows $\lambda_1 \vee \lambda_2$ $\mu_1 \vee \mu_2$ and $\lambda_1 \wedge \lambda_2$ $\mu_1 \wedge \mu_2$.

An L-topogenous order is said to be regular or is said to be an L-topogenous structure if for all λ , $\mu \in L^X$ with λ μ there is $a v \in L^X$ such that λ v and v μ hold, and is called *complemen*tarily symmetric if $\lambda \mu$ implies $\mu' \lambda'$ for all $\lambda, \mu \in L^X$ and moreover is called *perfect* if for each family $(\lambda_i)_{i \in I}$ of L-subsets of X with λ_i μ for all $i \in I$ it follows $\bigvee \lambda_i \ll \mu$. $i \in I$

Let $\binom{n}{n}$ be a sequence of *L*-topogenous structures on *X* and $(_n)$ a sequence of L-topogenous structures on I_L . Then an Lreal function f: $X \rightarrow I_L$ is said to be *associated with* the sequence $\binom{n}{n}$ if for all $\lambda, \mu \in L^{I_L}, \lambda \leq n\mu$ implies $(\lambda \circ f)_{n+1}(\mu \circ f)$ for every positive integer n [\[11\]](#page-5-0).

Now, suppose that (G, τ) has a countable *L*-neighborhood filter $\mathcal{N}(e)$ at the identity e. Since any L-topological group, from Proposition 4.1, is uniformizable, then the left and the right invariant L-uniform structures \mathcal{U}^l and \mathcal{U}^r , constructed also in Proposition 4.1, has, from Remark 4.1, a countable *L*-filter base $\mathcal{U}^l_{\frac{1}{n}}$ and $\mathcal{U}^r_{\frac{1}{n}}$, respectively, $n \in \mathbb{N}$.

Lemma 4.1. [\[18\]](#page-5-0) For all λ , $\mu \in L^X$, we have $\lambda \leq \mu$ if and only if $\dot{\lambda} \succ \dot{\mu}$.

Here, we prove this interesting result.

Lemma 4.2. Let U be an L-uniform structure on a set X , and define a binary relation on L^X as follows:

$$
\lambda \ll_{\mathcal{U}} \mu \Longleftrightarrow \mathcal{U}[\lambda] \succ \mu
$$

for all λ , $\mu \in L^X$. Then $\ll_{\mathcal{U}}$ is a complementarily symmetric perfect L-topogenous order on X.

Proof. From the properties of U as an *L*-filter, [\(2.1\)](#page-1-0) and Lemma 4.1 we get easily that $\ll_{\mathcal{U}}$ fulfills all the required conditions.

Proposition 4.2. [\[13\]](#page-5-0) There is a one-to-one correspondence between the perfect L-topogenous structures on a set X and the L-topologies τ on X. This correspondence is given by

$$
\lambda \ll \mu \Longleftrightarrow \lambda \leqslant \nu \leqslant \mu \text{ for some } \nu \in \tau
$$

for all $\lambda, \mu \in L^X$ and

 $\tau = \{\lambda \in L^X | \lambda \ll \lambda\}.$

Now we have the following result.

Proposition 4.3. Suppose that U and $\left(U_{\frac{1}{n}}\right)$ $(\mathcal{U}_{\frac{1}{n}})_{n\in\mathbb{N}}$ are an L-uniform structure on X and its countable L-filter base, respectively, and also consider V an L-uniform structure on I_L . Let $\binom{n}{n}$ denote a sequence of complementarily symmetric perfect L-topogenous structures on X for which $\lambda \ll_n \mu \Longleftrightarrow \mathcal{U}[\lambda] \succ \mu$ for all $\lambda, \mu \in L^X$, and let Φ be the family of all L-uniformly continuous functions $h: (X, \mathcal{U}) \to (I_L, \mathcal{V})$ associated with $\binom{n}{n}$ _{n∈N}. Then the mapping $\sigma_{\mathcal{U}} : X \times X \to I_L$ defined by

$$
\sigma_{\mathcal{U}}(x,y) = \sup \{\sigma_f(x,y)|f \in \Phi\},\
$$

where $\sigma_f(x, y) = (f(x) - f(y))^+$ for all $x, y \in X$, is an L-pseudo-metric on X and $\tau_{\mathcal{U}} = \tau_{\sigma_{\mathcal{U}}}$.

Proof. The proof of that $\sigma_{\mathcal{U}}$ is an *L*-pseudo-metric on *X* comes from Lemmas 3.1, 3.2, and 4.2.

Since for any $\lambda \in L^X$, and from Proposition 4.2

 $\lambda{\ll_n}\lambda \Longleftrightarrow \mathcal{U}[\dot{\lambda}]\succ\dot{\lambda}$

means that $\lambda \in \tau_U$ if and only if $\lambda \in \tau_{\sigma_U}$, where σ_U is generated by all the L-pseudo-metrics σ_h for every h associated with n . Hence, $\tau_{\mathcal{U}} = \tau_{\sigma_{\mathcal{U}}}$. \Box

5. The metrizability of L-topological groups

This section is devoted to show that any (separated) L-topological group is pseudo-metrizable (metrizable).

An *L*-topological group (G, τ) is called *separated* if for the identity element e, we have $\bigwedge_{\lambda \in \alpha - \text{prN}(e)} \lambda(e) \ge \alpha$, and $\bigwedge_{\lambda \in \alpha - \text{pr}(e)} \lambda(x) < \alpha$ for all $x \in G$ with $x \neq e$ and for all $\alpha \in L_0$ [\[4\]](#page-5-0).

Proposition 5.1. [\[4\]](#page-5-0) Any (separated) L-topological group is a $(GT_{3\frac{1}{2}}$ -space) completely regular space.

Now, we are going to show the main result in this paper.

Proposition 5.2. Any (separated) L-topological group (G, τ) is pseudo-metrizable (metrizable).

Proof. From Proposition 4.1, we have unique left and unique right L-uniform structures \mathcal{U}^l and \mathcal{U}^r on G defined by [\(4.1\)](#page-3-0) such that $\tau = \tau_{\mathcal{U}'} = \tau_{\mathcal{U}'}$. Proposition 4.3 implies that $\tau = \tau_{\mathcal{U}'} = \tau_{\sigma,\mathcal{U}}$ and $\tau = \tau_{U} = \tau_{\sigma_{U}}$, and therefore (G, τ) is pseudo-metrizable.

Also, if (G, τ) is separated, then from Proposition 5.1, we get that (G, τ) is a GT_0 -space, and hence, from Lemma 3.3, we have that (G, τ) is metrizable. \Box

We also have the following important result.

Proposition 5.3. Let (G, τ) be a (separated) L-topological group. Then the following statements are equivalent.

- (1) τ is pseudo-metrizable (metrizable);
- (2) e has a countable L-neighborhood filter $\mathcal{N}(e)$;
- (3) τ can be induced by a left invariant L-pseudo-metric (Lmetric);
- (4) τ can be induced by a right invariant L-pseudo-metric (Lmetric).

Proof. (1) \Rightarrow (2): Follows from Proposition 3.1

(2) \Rightarrow (3): Let *e* has a countable *L*-neighborhood filter $\mathcal{N}(e)$, and let \mathcal{U}_1^l be a countable *L*-filter base of the left invariant L-uniform structure \mathcal{U}^l , defined by [\(4.1\)](#page-3-0), which is compatible with τ . Then, from Lemma 4.2, $\lambda \ll \mu/\mu \iff \mathcal{U}^l[\lambda] \succ \mu$ for all $\lambda, \mu \in L^G$ defines a sequence of complementarily symmetric perfect L-topogenous structures on G. Taking V as an L-uniform structure on I_L and Φ as the family of all L-uniformly continuous functions $h: (G, \mathcal{U}^l) \to (I_L, \mathcal{V})$ associated with $\ll_{\mathcal{U}^l}$, we get, from Proposition 4.3, that the L-mapping $\sigma: G \times G \to I_L$ defined by $\sigma(x, \sigma)$ y) = sup{ $(f(x) - f(y))$ ⁺ $|f \in \Phi$ } is an *L*-pseudo-metric on *G* and $\tau = \tau_{i\ell} = \tau_{\sigma_{i\ell}}$.

Now, we define $h_a: G \to I_L$ by $h_a(x) = h(a \ x)$ for all a, $x \in G$. From $h \in \Phi$ is *L*-uniformly continuous, that is, $\mathcal{F}_L(h \times h)(\mathcal{U}^l) \succ \mathcal{V}$ and that the elements of \mathcal{U}^l_1 are left invariant from Remark 4.1, and from [\(4.1\),](#page-3-0) we have

$$
\mathcal{F}_L(h_a \times h_a) \mathcal{U}^l(v) = \mathcal{U}^l(v \circ (h_a \times h_a))
$$

=
$$
\bigvee_{u \in \mathcal{U}^l_{\frac{1}{n}}, u \leqslant v \circ (h_a \times h_a)} \frac{1}{n}
$$

=
$$
\bigvee_{u \in \mathcal{U}^l_{\frac{1}{n}}, u \leqslant v \circ (h \times h)} \frac{1}{n}
$$

=
$$
\mathcal{F}_L(h \times h) \mathcal{U}^l(v)
$$

\geq
$$
\mathcal{V}(v).
$$

Hence, h_a is *L*-uniformly continuous associated with $\ll_{\mathcal{U}^i}$, that is, $h_a \in \Phi$. Thus

$$
\sigma(ax, ay) = \sup \{ (h(ax) - h(ay))^+ | h \in \Phi \}
$$

=
$$
\sup \{ (h_a(x) - h_a(y))^+ | h \in \Phi \}
$$

$$
\leq \sup \{ (k(x) - k(y))^+ | k \in \Phi \}
$$

=
$$
\sigma(x, y).
$$

Applying the same for a^{-1} instead of a, we get that $\sigma(x, \cdot)$ y) = $\sigma(a^{-1}a \ x, a^{-1}a \ y) \leq \sigma(a \ x, a \ y)$. That is, $\sigma(a \ x, a \ y)$ y) = $\sigma(x, y)$ for all a, x, $y \in G$ and then σ is a left invariant L-pseudo-metric on G inducing τ .

 $(2) \Rightarrow (4)$: By a similar proof as in the case $(2) \Rightarrow (3)$.

 $(3) \Rightarrow (1)$ and $(4) \Rightarrow (1)$: Obvious.

The proposition is still true if we consider the parentheses. \square

Example 5.1. From Proposition 5.2, we can deduce that any L-topological group (G, τ) on which there can be constructed an L-uniform structure U compatible with τ is pseudo-metrizable in general and is metrizable whenever (G, τ) is separated.

Acknowledgement

The authors appreciate the reviewers for their valuable comments and suggestions.

References

- [1] S. Gähler, W. Gähler, Fuzzy real numbers, Fuzzy Sets and Systems 66 (1994) 137–158.
- [2] T.M.G. Ahsanullah, On L-neighborhood groups, Journal of Mathematical Analysis and Applications 130 (1988) 237–251.
- [3] F. Bayoumi, On initial and final L-topological groups, Fuzzy Sets and Systems 156 (2005) 43–54.
- [4] F. Bayoumi, I. Ibedou, The uniformizability of L-topological groups, Journal of Fuzzy Mathematics 17 (1) (2009) 35–52.
- [5] W. Gähler, F. Bayoumi, A. Kandil, A. Nouh, The theory of global L-neighborhood structures, III, fuzzy uniform structures, Fuzzy Sets and Systems 98 (1998) 175–199.
- [6] P. Eklund, W. Gähler, Fuzzy filter functors and convergence, in: Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht, 1992, pp. 109–136.
- [7] W. Gähler, The general *L*-filter approach to *L*-topology, I, Fuzzy Sets and Systems 76 (1995) 205–224.
- [8] W. Gähler, The general *L*-filter approach to *L*-topology, II, Fuzzy Sets and Systems 76 (1995) 225–246.
- [9] F. Bayoumi, I. Ibedou, T_i -spaces, I. The Journal of The Egyptian Mathematical Society 10 (2002) 179–199.
- [10] F. Bayoumi, I. Ibedou, T_i -spaces, II, The Journal of The Egyptian Mathematical Society 10 (2002) 201–215.
- [11] F. Bayoumi, I. Ibedou, GT_{3} -spaces, I, Journal of the Egyptian Mathematical Society 14 (2) (2006) 243-264.
- [12] F. Bayoumi, I. Ibedou, $GT_{3\frac{1}{2}}$ -spaces, II, Journal of the Egyptian Mathematical Society 14 (2) (2006) 265-282.
- [13] A.K. Katsaras, C.G. Petalas, On *L*-syntopogenous structures, Journal of Mathematical Analysis and Applications 99 (1984) 219–236.
- [14] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338– 353.
- [15] R. Lowen, Convergence in L-topological spaces, General Topology and Applications 10 (1979) 147–160.
- [16] C.H. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications 24 (1968) 182–190.
- [17] J.A. Goguen, L-sets, Journal of Mathematical Analysis and Applications 18 (1967) 145–174.
- [18] F. Bayoumi, I. Ibedou, The relation between the GT_i -spaces and L-proximity spaces, G-compact spaces, L-uniform spaces, The Journal of Chaos, Solitons and Fractals 20 (2004) 955–966.