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Abstract In this study, we study the metrizability of the notion of L-topological group defined by
Ahsanullah 1988. We show that for any (separated) L-topological group there is an L-pseudo-met-
ric (L-metric), in sense of Gédhler which is defined using his notion of L-real numbers, compatible
with the L-topology of this (separated) L-topological group. That is, any (separated) L-topological
group is pseudo-metrizable (metrizable).
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1. Introduction

The notion of L-real numbers is defined and studied by S.
Gihler and W. Géhler in [1]. R, denotes the set of all L-real
numbers. The subset R; of Ry of all positive L-real numbers
is used to define the L-pseudo-metric (L-metric) on a set X,
by the same authors in [1], as a mapping of the cartesian prod-
uct X x X to R} which satisfying similar conditions to the con-
ditions of the usual metric. In this paper we study the
metrizability, using the L-pseudo-metric (L-metric) in sense
of [1], of a notion of L-topological group which is introduced
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in [2] and studied in [3]. This L-topological groups is defined as
a group equipped with an L-topology such that both the bin-
ary operation and the unary operation of the inverse are L-
continuous with respect to this L-topology.

In this paper, using the uniformizability of L-topological
groups introduced by the authors in [4], we show that any (sep-
arated) L-topological group is pseudo-metrizable (metrizable).
In [4] is used the L-uniform structures which are defined in [5]
on a set X, in a similar way to the usual case, as L-filters on
X xX.

In Section 2 of this paper we recall some results on L-filters,
L-real numbers defined by Géhler in [1,6-8], and some separa-
tion axioms defined by the authors in [9-12].

Sections 3 and 4 introduce and show some results on L-met-
ric and L-uniform spaces, respectively, which are needed to
show the metrizability of L-topological groups. We will use
the notion of L-topogenous structure [13].

In Section 5 we show that the L-pseudo-metric (L-metric),
in sense of [1], induces the L-topology of a (separated) L-topo-
logical group, that is, any (separated) L-topological group is
pseudo-metrizable (metrizable).

1110-256X © 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.
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2. On L-filters

Recall here some ideas concerning L-filters needed in the pa-
per. Denote by L* the set of all L-subsets of a non-empty set
X, where L is a complete chain with different least and greatest
elements 0 and 1, respectively [14]. Let Lo = L\{0} and

= L\{1}. For each L-set A € L*, let X denote the comple-
ment of A, defined by A'(x) = A(x) for all x € X. For all
x € X and o € Ly, the L-subset x, of X whose value o at x
and 0 otherwise is called an L-point in X and the constant
L-subset of X with value o will be denoted by a.

L-filters. By an L-filter on a non-empty set X we mean [7] a
mapping M : LY — L such that M(a) < « for all « € L and
M(1) =1, and also M(AA ) = M) AM(p) for all 4,
peL* M is called homogeneous [7) if M(z)=a for all
o€ L. If M and N are L-filters on X, M is called finer than
N, denoted by M = N, provided M(4) = N(Z) holds for
all e LY. By My¥N we mean that M is not finer than N.
Since L is a complete chain, then

M#EN <= there is f€ L* such that M(f) < N(f).

Let 7, X denote the set of all L-filters on X, f: X — Y a map-
ping and M, N are L-filters on X, Y, respectively. Then the image
of M and the preimage of N with respect to f are the L-filters
Fifi M) on Y and F f(N) on X defined by
FrfiM) () = M(uof) for all pe Ll and
FLN)A) =V s N () for all 2 € L¥, respectively. For each
mapping f: X — Y and each L-filter A" on Y, for which the preim-
age F f(N) exists, we have F,f(F f(N)) = N. Moreover, for
each L-ilter M on X, the inequality M >~ F, f{Ff(M)) holds
[7].

For any set A of L-filters on X, the infimum A ,,., M, with
respect to the finer relation on L-filters, does not exist in gen-
eral. The infimum A, , M of A exists if and only if for each
non-empty finite subset {M,;,...,M,} of A we have
MiA) A AMy(A) <sup(Ay A= AJy) for all 4y, ...,
Jn € L* [6]. If the infimum of A exists, then for each 2 e L¥
and n as a positive integer we have

(/\M)(A) =\ (MG A AM ().

MeA
My Mp€A

By a filter on X we mean a non-empty subset F of L¥ which
does not contain 0 and closed under finite infima and super sets
[15]. For each L-filter M on X, the subset o — pr M of L* de-
fined by: « — pr M = {4 € L*|M(2) > o} is a filter on X.

A family (B,),.,, of non-empty subsets of LX is called val-
ued L-filter base on X [7] if the following conditions are
fulfilled:

(V1) 4 € B, implies o < supA.

(V2) Foralla, f € Lyand all L-sets A € B, and u € By, if even
oA f > 0 holds, then there are a y > a A f and an L-set
v < A Apsuch that v € B,.

Each valued L-filter base (B,),,, on a set X defines an L-
filter M on X by: M(2) =V cp, ;@ for all L€ L*. On the
other hand, each L-filter M can be generated by many valued
L-filter Dbases, and among them the greatest one

(o — pr M)“GLO.

L-neighborhood filters. In the following, the topology in
sense of [16,17] will be used which will be called L-topology.
int, and cl; denote the interior and the closure operators with
respect to the L-topology 7, respectively. For each L-topolog-
ical space (X, 1) and each x € X the mapping N'(x) : L* — L
defined by: M (x)(4) = int,A(x) for all 2 € L¥ is an L-filter on
X, called the L-neighborhood filter of the space (X, 7) at x,
and the mapping x : L* — L defined by %(1) = A(x) for all
J e LY is a homogeneous L-filter on X. The L-neighborhood
filters fulfill the following conditions:

(N1) x = N (x) holds for all x € X;

(N2) (M (x))(int.f) = (N (x))(f) for all x € X and f e L~

Let (X, 7) and (7, ¢) be two L-topological spaces. Then the
mapping f: (X, 1) = (Y, o) is called L-continuous (or (z, g)-con-
tinuous) provided int,u o < int(u o f) for all u e LY [8].

The L-neighborhood filter A/(F) at an ordinary subset F of
X is the L-filter on X deﬁned by the authors in [10], by means
of N(x),x € Fas: N(F) = \/ N (x). The L-filter Fis defined
by: F=\/ X F~ N( F) holds for all subsets F of X. Recall
also here the L-filter / and the L-neighborhood filter /(%) at
an L-subset A of X which are defined by

=\ 1 and N()=\/ N), (2.1
0<A(x) 0<A(x)
respectively. 4 > N/(1) holds for all 2 € LY [18].

L-real numbers. By an L-real number is meant [1] a convex,
normal, compactly supported and upper semi-continuous L-
subset of the set of all real numbers R. The set of all L-real
numbers is denoted by R;. R is canonically embedded into
R;, identifying each real number a with the crisp L-number
a” defined by a™(¢) = 1 if £ = a and 0 otherwise. The set of
all positive L-real numbers is defined and denoted by:
R; = {x € R.|x(0) =1 and 0™ < x} and let
I, = {x c RZ\x <17 } where 7 = [0, 1] is the real unit inter-
val. Note that we mean here by < the binary operation on
R; defined by

x<y&=x, <y, and x, <y,

for all x, yeR, where x, =inf{z€ R|x(z) > o} and
Xy, =sup{z € R|x(z) > o} for all x € R, and for dl] o€ L.
It is shown in [7] that the class
{Rs,, 16 € I} U{R’|, |6 € I} U{0~], } is a base for an L-topol-
ogy J on I;, where R° and Rj are the L-subsets of R; defined

Rs(x) = \/ 4= ox(2) and R°(x) = (\/,=sx(2)) forall x € R,
and 0 € R and note that R5|, R’ |, are the restrictions of R,
R°® on I, respectively. Recall also that x + y are L-real num-
bers defined by (x £ y)(&) = \/ ,rer, yoc=c(x(n) A p(0)) for all
¢ eR. (Rz, +)is a commutative semi group with identity ele-
ment 0~. The positive part x © of an L-real number x is defined
as x* = 0~ v x, where

(x+1)" < x4+ ", (2.2)

GTrspaces. An L-topological space (X, 7) is called [9,11]:

x—x=07,

(1) GTy if for all x, y € X with x#y we have x#N(y) or
VAN (x).

(2) GT, if for all x, y € X with x #y we have N (y) and
VAN (x).
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(3) completely regular if for all x ¢ F and F = cl.F, there
exists an L-continuous mapping f : (X,7) — (I, 3)
such that f(x) =1 and f(y) =0 for all y € F.

4) GT% (or L-Tychonoff) if it is GT, and completely
regular.

Proposition 2.1 (9-12). Every GTrspace is GT;_;~space for all
i=1,2 34,5 6. Moreover, the implications between GT3-
spaces, GTy-spaces and GTspaces goes as expected.

3. Some results on L-metric spaces

A mapping ¢ : X x X — R; is called an L-metric [1] on X if the
following conditions are fulfilled:

(1) o(x, y) = 07 if and only if x = y
(2) elx, y) = ey, x)
(3) aolx, y) < olx, 2) + oz, y).

If 9 : X x X — Rj satisfies the conditions (2) and (3) and
the following condition:

(D" (x, y) = 07if x =y

then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) @ on
X is called an L-pseudo-metric (L-metric) space.

To each L-pseudo-metric (L-metric) o on a set X is gener-
ated canonically a stratified L-topology 1, on X which has
{eog,|e € £, x € X} as a base, where ¢, : X — R] is the map-
ping defined by o.(y) = o(x, y) and

E={aAR

R: 0>0,ae L} U{alaec L},
here o has R} as domain.

An L-topological space (X, 7) is called pseudo-metrizable
(metrizable) if there is an L-pseudo-metric (L-metric) @ on X
inducing 7, that is, T = 1.

An L-pseudo-metric g is called left (right) invariant if

o(x,y) = a(ax,ay)(e(x,y) = ¢(xa, ya)) for all a,x,y € X.

An L-set i c L is called countable (finite) if its support is
countable (finite), where the support of 1 is the set
{xe X0 < Ax)}.

Let us call an L-filter M on a set X countable if the sets
o — prM are countable for all & € L.

Definition 3.1. An L-topological space (X, t) is called first
countable if every point x € X has a countable L-neighborhood

filter NV (x).

Proposition 3.1. For any L-pseudo-metric @ on a set X, if 14 is
the L-topology associated with Q, then (X, t,) is a first count-
able space.

Proof. Since {eé0 g |c € £, x € X} is a base for 74, then for all
neN, the set B,={go00.le, €& xeX}, where

e =1A R5|R; , is the 1 —pr A(x), which implies that there

exists a countable L-neighborhood filter A/(x) at every point
x € X. Hence, (X, 1) is a first countable space. [

By an L-function family ® on a set X, we mean the set of all
L-real functions 2 X — I;.
We also have the following results.

Lemma 3.1. Let ® be an L-function family on X and oy:
XX X — I a mapping defined by

or(x,y) = (flx) = fy))", €D

Then oy is an L-pseudo-metric on X.

Proof. Clearly, a/(x, y) = oy, x). From (2.1), we get that
adx, x) = (f(x) — f(x))" = 0~ for all x € X, and moreover

ar(x,y) = (flx) =) " < (fx) = f2)" + (flz) = f¥)"
= oy(x,z) + a/(z,y).
Hence, o/is an L-pseudo-metric on X. [

Lemma 3.2. Let 0;: XXX — I, i € I be an arbitrary set of L-
pseudo-metrics on the set X. Then

a(x,y) = sup{ai(x, y)li € I}
defines an L-pseudo-metric on X as well.

Proof. Only the triangle inequality has to be shown. For all x,
y,z€ X and all i € I, we have

(fi(x7y) < O','(X,Z) +(f,'(Z7y) < O'(X,Z) +O_(Z7y)7

and then a(x, y) < a(x, z) + o(z, y). Hence, o is an L-pseudo-
metricon X. [

Here, we have shown this fact.

Lemma 3.3. Any L-pseudo-metric Q on a set X is an L-metric on
X if and only if (X, t,) is a GTy-space.

Proof. Let x, y € X and y # x. Since (X, 7o) is a GTy-space,
then there exists p € L* such that pu(x) < B <int,u(y) for
some f € Ly. From the definition of the base of 7, since

int, u(z) = A R’

w (x.2)) =2 A (\/ e(x2)(m)

n=o

for all z € X and for some o € L, then o(x, y) = 0~ implies that
int,,u(y) =aAl=oaforall yc Xandall uc L*. Hence,

o = int;, u(x) < p(x) < B <int,u(y) =o,

thatis, « < § < o which is a contradiction, and thus x = y and
Q is an L-metric.

Now let x#y and so o(x, y) # 07, then there exists o« > 0
such  that ox, y)(a)>0 and  hence taking
v=1 /\R‘5|R7 09, € L¥, we get that

v(y) = TAR(o(x,) = 1A (\/ e(x,2)(n) < 1

n>é
whenever ¢ is chosen to be a very small number tends to zero.
But int, v(x) = 1 A (V,2,0(x,x)(n))" = 1. Hence, (X, 7o) is a
GTy-space. [
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4. On L-uniform spaces

An L-filter U on X x X is called L-uniform structure on X [5] if
the following conditions are fulfilled:

U1) (x,x) > U for all x € X;

Uy U=U";
(U3) UolU >~ U.

Where (x, x)(u) = u(x, x), U '(u)=U"') and
U o U)(u) =V e U(W) AV(v)) for all u € LYY and w™'(x,
y) = u(y, x) and (vow)(x, y) = \/ZGX (w(x, z) Av(z, y)) for
all x, y e X.

A set X equipped with an L-uniform structure ¢/ is called an
L-uniform space. A mapping f: (X,U) — (Y,V) between L-
uniform spaces (X,U) and (Y, V) is said to be L-uniformly con-
tinuous (or (U, V)-continuous) provided

Fr(f xHU) =V

holds. To each L-uniform structure I/ on X is associated a
stratified L-topology 1. The related interior operator inty is
given by:

(inty4)(x) = U[x](2)

for all xeX and all AeLY, where UX](A)=

Voo U ) A u(x)) and u[ul(x) = \/ yex(u(y) A u(p, x)). For
all x € X and all 1 € L we have

Ux] = N(x) and U} =N(1),

where A/(x) and A (1) are the L-neighborhood filters of the
space (X, 1) at x and A, respectively.

Let U be an L-uniform structure on a set X. Then u €
is called a surrounding provided U(u) > o for some o € Ly and
u = u~'. A surrounding u € LX¥ is called left (right) invariant
provided

LX><X

u(ax,ay) = u(x,y)(u(xa,ya) = u(x,y)) for all a,x,y € X.

U is called a left (right) invariant L-uniform structure if ¢/ has a
valued L-filter base consists of left (right) invariant surround-
ings [4].

L-topological groups. In the following we focus our study
on a multiplicative group G. We denote, as usual, the identity
element of G by e and the inverse of an element a of G by a~ .
Let G be a group and 7 an L-topology on G. Then (G, t) will be

called an L-topological group [2] if the mappings
7n: (G x G,1x1)— (G,7) defined by n(a,b) =ab foralla,b € G

and
i:(G,7) — (G,7) defined by i(a) =a ' foralla € G

are L-continuous. 7 and 7 are the binary operation and the un-
ary operation of the inverse on G, respectively.

For all A € L, the inverse A’ of 4 with respect to the unary
operation i on G is the L-set 2o iin G defined by [4]

A(x) =2(x"") for all x € G.

Example 4.1. For a group G, the induced L-topological space
(G, wr(T)) of the usual topological group (G, T) is an L-
topological group.

Proposition 4.1. [4] Let (G, t) be an L-topological group. Then
there exist on G a unique left invariant L-uniform structure U’
and a unique right invariant L-uniform structure U" compatible
with T, constructed using the family (o — pr /\/(e))aeL0 of all fil-
ters o. — pr N (e), where N (e) is the L-neighborhood filter at the
identity element e of (G, t), as follows:

U'(u) = \/ o and U'(u) = \/ o, (4.1)
VGI,{L.\'@A vell, v<u

where

U; =oa—prid and U =a—prid (4.2)

are defined by
U, = {ue Lu(x,y) = (AN ) (x""p) for some 4

€a—prN(e} (4.3)
and
U, = {u e Lu(x,y) = (AN ) (xy™") for some 4
€a—prN(e} (4.4)

We should notice that we shall fix the notations U/, U", U,
and U, along the paper to be these defined above.

Remark 4.1. For the L-topological group (G, 1), the elements u
of Ul (") are left (right) invariant surroundings. Moreover,
(u;)am((u;)ﬂo) is a valued L-filter base for the left (right)
invariant L-uniform structure /' (U4") defined by (4.1), (4.2),
(4.3), (4.4), respectively.

L-topogenous orders. A binary relation on L* is said to be
an L-topogenous order on X [13] if the following conditions are
fulfilled:

(D0« 0and T« T;

(2) 4 pimplies A < g;

(3) A <4 p < implies Ay py;

(4) From 4; p; and 7, po it follows ;v A, puyv pp and
ALA Ay iy A .

An L-topogenous order is said to be regular or is said to be
an L-topogenous structure if for all Z, y € L with 4 p there is
ave LY such that A vand v phold, and is called complemen-
tarily symmetricif 2 pimplies ¢/ 2’ for all 4, u € L* and more-
over is called perfect if for each family (4;); <7 of L-subsets of X
with 4; p for all i € I it follows \/ 4; < p.

icl

Let (,,) be a sequence of L-topogenous structures on X and
(<,) a sequence of L-topogenous structures on I;. Then an L-
real function f: X — I is said to be associated with the se-
quence (,,) if for all A, u € L=, A < ,uimplies (Ao f) ,+1(uof)
for every positive integer n [11].

Now, suppose that (G, 7) has a countable L-neighborhood
filter NV'(e) at the identity e. Since any L-topological group,
from Proposition 4.1, is uniformizable, then the left and the
right invariant L-uniform structures ¢ and U", constructed
also in Proposition 4.1, has, from Remark 4.1, a countable
L-filter base Z/li and L{g, respectively, n € N.

Lemma 4.1. [18] For all /, p € L, we have
A < wif and only if 4 = f.
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Here, we prove this interesting result.

Lemma 4.2. Let U be an L-uniform structure on a set X, and
define a binary relation on LY as follows:

Iy = U] = ju

for all A, we LY. Then <y, is a complementarily symmetric per-
fect L-topogenous order on X.

Proof. From the properties of U as an L-filter, (2.1) and
Lemma 4.1 we get easily that <, fulfills all the required con-
ditions. O

Proposition 4.2. [13] There is a  one-to-one correspondence
between the perfect L-topogenous structures on a set X and
the L-topologies t on X. This correspondence is given by

AL u< A< v< puforsomever
for all J, pe LY and
t={ie LAk}

Now we have the following result.

Proposition 4.3. Suppose that U and <Z/{;) are an L-uniform

n/ neN

structure on X and its countable L-filter base, respectively, and
also consider V an L-uniform structure on I. Let ()~ denote
a sequence of complementarily symmetric perfect L-topogenous
structures on X for which A<, pu <= U[4] = jifor all J., p e LY,
and let ® be the family of all L-uniformly continuous functions
h: (X,U) — (I, V) associated with (,,),en. Then the mapping
oy : X x X — I defined by

ou(x,y) = sup {o/(x,y)lf € P},

where ap(x,y) = (f(x) —f(y)) * forall x, y € X, is an L-pseu-
do-metric on X and 1y = 1,,.

Proof. The proof of that gy, is an L-pseudo-metric on X comes
from Lemmas 3.1, 3.2, and 4.2.

Since for any 4 € L¥, and from Proposition 4.2

Apd = U] =

means that 4 € 7, if and only if 1 € 7,,, where g, is generated
by all the L-pseudo-metrics g, for every h associated with ,,.
Hence, 1 = 7,,. O

5. The metrizability of L-topological groups

This section is devoted to show that any (separated) L-topo-
logical group is pseudo-metrizable (metrizable).

An L-topological group (G, 7) is called separated if for the
identity element e, we have A, . 4(e) = o and
Nicw e Ax) <o for all x€G with x#e and for all
o€ Ly [4].

Proposition 5.1. [4] Any (separated) L-topological group is a
(GTs-space) completely regular space.

Now, we are going to show the main result in this paper.

Proposition 5.2. Any (separated) L-topological group (G, 1) is
pseudo-metrizable (metrizable).

Proof. From Proposition 4.1, we have unique left and unique
right L-uniform structures ' and 4" on G defined by (4.1) such
that t = 7,; = 1. Proposition 4.3 implies that 1 =1, =1, ,
and t = 1 = 1,,, and therefore (G, 1) is pseudo-metrizable.

Also, if (G, 7) is separated, then from Proposition 5.1, we
get that (G, 1) is a GTy-space, and hence, from Lemma 3.3, we
have that (G, 1) is metrizable. [

We also have the following important result.

Proposition 5.3. Let (G, t) be a (separated) L-topological
group. Then the following statements are equivalent.

(1) 7 is pseudo-metrizable (metrizable),

(2) e has a countable L-neighborhood filter N (e);

(3) © can be induced by a left invariant L-pseudo-metric (L-
metric);

(4) © can be induced by a right invariant L-pseudo-metric (L-
metric).

Proof. (1) = (2): Follows from Proposition 3.1

(2) = (3): Let e has a countable L-neighborhood filter
N(e), and let Ui be a countable L-filter base of the left
invariant L-uniform structure I/, defined by (4.1), which is
compatible  with T. Then, from Lemma 4.2,
Iyt == U'J] = ju for all A, we L defines a sequence of
complementarily symmetric perfect L-topogenous structures
on G. Taking V as an L-uniform structure on /; and ® as the
family of all L-uniformly continuous functions
h:(G,U") — (I, V) associated with <, we get, from Prop-
osition 4.3, that the L-mapping ¢: G X G — I defined by o(x,
») = sup{(f(x) — (1)) "| f € ®} is an L-pseudo-metric on G and

T=Ty = Ty,

Now, we define h,: G — I; by h,(x) = h(a x) for all q,
x€G. From he® is L-uniformly continuous, that is,
Fr(hxh)U") =V and that the elements of U! are left
invariant from Remark 4.1, and from (4.1), we have

Fr(hy x h)U' () =U' (v o (he X 1))

\/ 1
n
uell! u<vo(haxha)
n
\/ 1
n

MEM/] uvo(hxh)
7

= Fr(h x U (v)
= V(v).
Hence, 5, is L-uniformly continuous associated with <, that
is, h, € ®. Thus
a(ax,ay) = sup{(h(ax) — h(ay))*|h € @}
sup{(ha(x) — ha(»))" |l € @}
sup {(k(x) — k(»))" [k € @}
=a(x,y).

N
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Applying the same for «~' instead of a, we get that a(x,
W=oa"'a x, a'a y)<ola x, a y). That is, o(a x, a
y) = o(x, y) for all a, x, y € G and then o is a left invariant
L-pseudo-metric on G inducing 7.

(2) = (4): By a similar proof as in the case (2) = (3).

(3) = (1) and (4) = (1): Obvious.

The proposition is still true if we consider the

parentheses. [

Example 5.1. From Proposition 5.2, we can deduce that any
L-topological group (G, t) on which there can be constructed
an L-uniform structure U compatible with t is pseudo-metriz-
able in general and is metrizable whenever (G, 7) is separated.
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