

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems



# The metrizability of L-topological groups

# Fatma Bayoumi \*, Ismail Ibedou<sup>1</sup>

Department of Mathematics, Faculty of Sciences, Benha University, Benha 13518, Egypt

Received 19 November 2012; revised 9 March 2013; accepted 20 March 2013 Available online 20 May 2013

# **KEYWORDS**

Countable L-filters; Countable L-topological spaces; L-topological groups; Separated L-topological groups; L-metric spaces; L-pseudo-metric spaces **Abstract** In this study, we study the metrizability of the notion of *L*-topological group defined by Ahsanullah 1988. We show that for any (separated) *L*-topological group there is an *L*-pseudo-metric (*L*-metric), in sense of Gähler which is defined using his notion of *L*-real numbers, compatible with the *L*-topology of this (separated) *L*-topological group. That is, any (separated) *L*-topological group is pseudo-metrizable (metrizable).

# 2000 MATHEMATICS SUBJECT CLASSIFICATION: 54A40

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

# 1. Introduction

The notion of *L*-real numbers is defined and studied by S. Gähler and W. Gähler in [1].  $\mathbf{R}_L$  denotes the set of all *L*-real numbers. The subset  $\mathbf{R}_L^*$  of  $\mathbf{R}_L$  of all positive *L*-real numbers is used to define the *L*-pseudo-metric (*L*-metric) on a set *X*, by the same authors in [1], as a mapping of the cartesian product  $X \times X$  to  $\mathbf{R}_L^*$  which satisfying similar conditions to the conditions of the usual metric. In this paper we study the metrizability, using the *L*-pseudo-metric (*L*-metric) in sense of [1], of a notion of *L*-topological group which is introduced

Peer review under responsibility of Egyptian Mathematical Society.

ELSEVIER Production and hosting by Elsevier

in [2] and studied in [3]. This *L*-topological groups is defined as a group equipped with an *L*-topology such that both the binary operation and the unary operation of the inverse are *L*-continuous with respect to this *L*-topology.

In this paper, using the uniformizability of *L*-topological groups introduced by the authors in [4], we show that any (separated) *L*-topological group is pseudo-metrizable (metrizable). In [4] is used the *L*-uniform structures which are defined in [5] on a set *X*, in a similar way to the usual case, as *L*-filters on  $X \times X$ .

In Section 2 of this paper we recall some results on *L*-filters, *L*-real numbers defined by Gähler in [1,6-8], and some separation axioms defined by the authors in [9-12].

Sections 3 and 4 introduce and show some results on L-metric and L-uniform spaces, respectively, which are needed to show the metrizability of L-topological groups. We will use the notion of L-topogenous structure [13].

In Section 5 we show that the *L*-pseudo-metric (*L*-metric), in sense of [1], induces the *L*-topology of a (separated) *L*-topological group, that is, any (separated) *L*-topological group is pseudo-metrizable (metrizable).

1110-256X © 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2013.03.012

<sup>\*</sup> Corresponding author.

E-mail address: fatma\_bayoumi@hotmail.com (F. Bayoumi).

<sup>&</sup>lt;sup>1</sup> Present address: Department of Mathematics, Faculty of Science, Jazan University, KSA.

# 2. On L-filters

Recall here some ideas concerning *L*-filters needed in the paper. Denote by  $L^X$  the set of all *L*-subsets of a non-empty set *X*, where *L* is a complete chain with different least and greatest elements 0 and 1, respectively [14]. Let  $L_0 = L \setminus \{0\}$  and  $L_1 = L \setminus \{1\}$ . For each *L*-set  $\lambda \in L^X$ , let  $\lambda'$  denote the complement of  $\lambda$ , defined by  $\lambda'(x) = \lambda(x)'$  for all  $x \in X$ . For all  $x \in X$  and  $\alpha \in L_0$ , the *L*-subset  $x_{\alpha}$  of *X* whose value  $\alpha$  at *x* and 0 otherwise is called an *L*-point in *X* and the constant *L*-subset of *X* with value  $\alpha$  will be denoted by  $\overline{\alpha}$ .

*L*-filters. By an *L*-filter on a non-empty set *X* we mean [7] a mapping  $\mathcal{M} : L^X \to L$  such that  $\mathcal{M}(\bar{\alpha}) \leq \alpha$  for all  $\alpha \in L$  and  $\mathcal{M}(\bar{1}) = 1$ , and also  $\mathcal{M}(\lambda \wedge \mu) = \mathcal{M}(\lambda) \wedge \mathcal{M}(\mu)$  for all  $\lambda$ ,  $\mu \in L^X$ .  $\mathcal{M}$  is called *homogeneous* [7] if  $\mathcal{M}(\bar{\alpha}) = \alpha$  for all  $\alpha \in L$ . If  $\mathcal{M}$  and  $\mathcal{N}$  are *L*-filters on *X*,  $\mathcal{M}$  is called *finer than*  $\mathcal{N}$ , denoted by  $\mathcal{M} \succ \mathcal{N}$ , provided  $\mathcal{M}(\lambda) \geq \mathcal{N}(\lambda)$  holds for all  $\lambda \in L^X$ . By  $\mathcal{M} \not\models \mathcal{N}$  we mean that  $\mathcal{M}$  is not finer than  $\mathcal{N}$ . Since *L* is a complete chain, then

 $\mathcal{M} \not\succ \mathcal{N} \iff$  there is  $f \in L^X$  such that  $\mathcal{M}(f) < \mathcal{N}(f)$ .

Let  $\mathcal{F}_L X$  denote the set of all *L*-filters on *X*, *f*:  $X \to Y$  a mapping and  $\mathcal{M}, \mathcal{N}$  are *L*-filters on *X*, *Y*, respectively. Then the *image* of  $\mathcal{M}$  and the *preimage* of  $\mathcal{N}$  with respect to *f* are the *L*-filters  $\mathcal{F}_L f(\mathcal{M})$  on *Y* and  $\mathcal{F}_L^- f(\mathcal{N})$  on *X* defined by  $\mathcal{F}_L f(\mathcal{M})(\mu) = \mathcal{M}(\mu \circ f)$  for all  $\mu \in L^Y$  and  $\mathcal{F}_L^- f(\mathcal{N})(\lambda) = \bigvee_{\mu \circ f \leqslant \lambda} \mathcal{N}(\mu)$  for all  $\lambda \in L^X$ , respectively. For each mapping  $f: X \to Y$  and each *L*-filter  $\mathcal{N}$  on *Y*, for which the preimage  $\mathcal{F}_L^- f(\mathcal{N})$  exists, we have  $\mathcal{F}_L f(\mathcal{F}_L f(\mathcal{N})) \succ \mathcal{N}$ . Moreover, for each *L*-filter  $\mathcal{M}$  on *X*, the inequality  $\mathcal{M} \succ \mathcal{F}_L^- f(\mathcal{F}_L f(\mathcal{M}))$  holds [7].

For any set *A* of *L*-filters on *X*, the infimum  $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$ , with respect to the finer relation on *L*-filters, does not exist in general. The infimum  $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$  of A exists *if and only if* for each non-empty finite subset  $\{\mathcal{M}_1, \ldots, \mathcal{M}_n\}$  of A we have  $\mathcal{M}_1(\lambda_1) \wedge \cdots \wedge \mathcal{M}_n(\lambda_n) \leq \sup(\lambda_1 \wedge \cdots \wedge \lambda_n)$  for all  $\lambda_1, \ldots, \lambda_n \in L^X$  [6]. If the infimum of *A* exists, then for each  $\lambda \in L^X$ and *n* as a positive integer we have

$$\left(\bigwedge_{\mathcal{M}\in\mathcal{A}}\mathcal{M}\right)(\lambda)=\bigvee_{\substack{\lambda_1\wedge\cdots\lambda_n\leqslant\lambda,\\\mathcal{M}_1,\ldots,\mathcal{M}_n\in\mathcal{A}}}(\mathcal{M}_1(\lambda_1)\wedge\cdots\wedge\mathcal{M}_n(\lambda_n)).$$

By a *filter* on X we mean a non-empty subset  $\mathcal{F}$  of  $L^X$  which does not contain  $\overline{0}$  and closed under finite infima and super sets [15]. For each L-filter  $\mathcal{M}$  on X, the subset  $\alpha - \operatorname{pr} \mathcal{M}$  of  $L^X$  defined by:  $\alpha - \operatorname{pr} \mathcal{M} = \{\lambda \in L^X | \mathcal{M}(\lambda) \ge \alpha\}$  is a filter on X.

A family  $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$  of non-empty subsets of  $L^X$  is called *valued L-filter base* on X [7] if the following conditions are fulfilled:

(V1)  $\lambda \in \mathcal{B}_{\alpha}$  implies  $\alpha \leq \sup \lambda$ .

(V2) For all  $\alpha$ ,  $\beta \in L_0$  and all *L*-sets  $\lambda \in \mathcal{B}_{\alpha}$  and  $\mu \in \mathcal{B}_{\beta}$ , if even  $\alpha \land \beta > 0$  holds, then there are a  $\gamma \ge \alpha \land \beta$  and an *L*-set  $v \le \lambda \land \mu$  such that  $v \in \mathcal{B}_{\gamma}$ .

Each valued *L*-filter base  $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$  on a set *X* defines an *L*-filter  $\mathcal{M}$  on *X* by:  $\mathcal{M}(\lambda) = \bigvee_{\mu \in \mathcal{B}_{\alpha}, \mu \in \lambda} \alpha$  for all  $\lambda \in L^X$ . On the other hand, each *L*-filter  $\mathcal{M}$  can be generated by many valued *L*-filter bases, and among them the greatest one  $(\alpha - \operatorname{pr} \mathcal{M})_{\alpha \in L_0}$ .

*L*-neighborhood filters. In the following, the topology in sense of [16,17] will be used which will be called *L*-topology. int<sub> $\tau$ </sub> and cl<sub> $\tau$ </sub> denote the interior and the closure operators with respect to the *L*-topology  $\tau$ , respectively. For each *L*-topological space  $(X, \tau)$  and each  $x \in X$  the mapping  $\mathcal{N}(x) : L^X \to L$ defined by:  $\mathcal{N}(x)(\lambda) = \operatorname{int}_{\tau}\lambda(x)$  for all  $\lambda \in L^X$  is an *L*-filter on *X*, called the *L*-neighborhood filter of the space  $(X, \tau)$  at *x*, and the mapping  $\dot{x} : L^X \to L$  defined by  $\dot{x}(\lambda) = \lambda(x)$  for all  $\lambda \in L^X$  is a homogeneous *L*-filter on *X*. The *L*-neighborhood filters fulfill the following conditions:

(N1)  $\dot{x} \succ \mathcal{N}(x)$  holds for all  $x \in X$ ;

(N2) 
$$(\mathcal{N}(x))(\operatorname{int}_{\tau} f) = (\mathcal{N}(x))(f)$$
 for all  $x \in X$  and  $f \in L^X$ .

Let  $(X, \tau)$  and  $(Y, \sigma)$  be two *L*-topological spaces. Then the mapping  $f: (X, \tau) \to (Y, \sigma)$  is called *L*-continuous (or  $(\tau, \sigma)$ -continuous) provided  $\operatorname{int}_{\sigma} \mu \circ f \leq \operatorname{int}_{\tau}(\mu \circ f)$  for all  $\mu \in L^{Y}$  [8].

The *L*-neighborhood filter  $\mathcal{N}(F)$  at an ordinary subset *F* of *X* is the *L*-filter on *X* defined, by the authors in [10], by means of  $\mathcal{N}(x), x \in F$  as:  $\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x)$ . The *L*-filter  $\dot{F}$  is defined by:  $\dot{F} = \bigvee_{x \in F} \dot{x}$ .  $\dot{F} \succ \mathcal{N}(F)$  holds for all subsets *F* of *X*. Recall also here the *L*-filter  $\dot{\lambda}$  and the *L*-neighborhood filter  $\mathcal{N}(\lambda)$  at an *L*-subset  $\lambda$  of *X* which are defined by

$$\dot{\lambda} = \bigvee_{0 < \lambda(x)} \dot{x} \quad \text{and} \quad \mathcal{N}(\lambda) = \bigvee_{0 < \lambda(x)} \mathcal{N}(x),$$
(2.1)

respectively.  $\dot{\lambda} \succ \mathcal{N}(\lambda)$  holds for all  $\lambda \in L^X$  [18].

*L*-real numbers. By an *L*-real number is meant [1] a convex, normal, compactly supported and upper semi-continuous *L*-subset of the set of all real numbers **R**. The set of all *L*-real numbers is denoted by  $\mathbf{R}_L$ . **R** is canonically embedded into  $\mathbf{R}_L$ , identifying each real number *a* with the crisp *L*-number  $a^{\sim}$  defined by  $a^{\sim}(\xi) = 1$  if  $\xi = a$  and 0 otherwise. The set of all positive *L*-real numbers is defined and denoted by:  $\mathbf{R}_L^* = \{x \in \mathbf{R}_L | x(0) = 1 \text{ and } 0^{\sim} \leq x\}$  and let  $I_L = \{x \in \mathbf{R}_L | x \leq 1^{\sim}\}$ , where I = [0, 1] is the real unit interval. Note that we mean here by  $\leq$  the binary operation on  $\mathbf{R}_L$  defined by

$$x \leq y \iff x_{\alpha_1} \leq y_{\alpha_1}$$
 and  $x_{\alpha_2} \leq y_{\alpha_2}$ 

for all  $x, y \in \mathbf{R}_L$  where  $x_{\alpha_1} = \inf\{z \in \mathbf{R} | x(z) \ge \alpha\}$  and  $x_{\alpha_2} = \sup\{z \in \mathbf{R} | x(z) \ge \alpha\}$  for all  $x \in \mathbf{R}_L$  and for all  $\alpha \in L_0$ . is shown in [7] that the It class  $\{R_{\delta}|_{I_L}|\delta \in I\} \cup \{R^{\delta}|_{I_L}|_{o}^{\delta} \in I\} \cup \{0^{\sim}|_{I_L}\}$  is a base for an *L*-topology  $\mathfrak{I}$  on  $I_L$ , where  $R^{\delta}$  and  $R_{\delta}$  are the L-subsets of  $\mathbf{R}_L$  defined by  $R_{\delta}(x) = \bigvee_{\alpha \geq \delta} x(\alpha)$  and  $R^{\delta}(x) = (\bigvee_{\alpha \geq \delta} x(\alpha))'$  for all  $x \in \mathbf{R}_L$ and  $\delta \in \mathbf{R}$  and note that  $R_{\delta}|_{I_{I}}, R^{\delta}|_{I_{I}}$  are the restrictions of  $R_{\delta}$ ,  $R^{\delta}$  on  $I_L$ , respectively. Recall also that  $x \pm y$  are L-real numbers defined by  $(x \pm y)(\xi) = \bigvee_{\eta, \zeta \in \mathbf{R}, \ \eta \pm \zeta = \zeta} (x(\eta) \land y(\zeta))$  for all  $\xi \in \mathbf{R}$ . ( $\mathbf{R}_L$ , +) is a commutative semi group with identity element  $0^{\sim}$ . The positive part  $x^+$  of an *L*-real number x is defined as  $x^+ = 0^{\sim} \lor x$ , where

$$x - x = 0^{\sim}, \quad (x + y)^+ \leq x^+ + y^+.$$
 (2.2)

 $GT_i$ -spaces. An L-topological space  $(X, \tau)$  is called [9,11]:

- (1)  $GT_0$  if for all  $x, y \in X$  with  $x \neq y$  we have  $\dot{x} \not\succ \mathcal{N}(y)$  or  $\dot{y} \not\succ \mathcal{N}(x)$ .
- (2)  $GT_1$  if for all  $x, y \in X$  with  $x \neq y$  we have  $\dot{x} \not\models \mathcal{N}(y)$  and  $\dot{y} \not\models \mathcal{N}(x)$ .

- (3) completely regular if for all  $x \notin F$  and  $F = cl_{\tau}F$ , there exists an *L*-continuous mapping  $f : (X, \tau) \to (I_L, \mathfrak{I})$  such that  $f(x) = \overline{1}$  and  $f(y) = \overline{0}$  for all  $y \in F$ .
- (4)  $GT_{3\frac{1}{2}}$  (or *L*-*Tychonoff*) if it is  $GT_1$  and completely regular.

**Proposition 2.1** (9–12). Every  $GT_i$ -space is  $GT_{i-1}$ -space for all i = 1, 2, 3, 4, 5, 6. Moreover, the implications between  $GT_3$ -spaces,  $GT_3$ -spaces and  $GT_4$ -spaces goes as expected.

#### 3. Some results on L-metric spaces

A mapping  $\varrho: X \times X \to \mathbf{R}_L^*$  is called an *L*-metric [1] on *X* if the following conditions are fulfilled:

- (1)  $\varrho(x, y) = 0^{\sim}$  if and only if x = y
- (2)  $\varrho(x, y) = \varrho(y, x)$
- (3)  $\varrho(x, y) \leq \varrho(x, z) + \varrho(z, y).$

If  $\varrho: X \times X \to \mathbf{R}_{L}^{*}$  satisfies the conditions (2) and (3) and the following condition:

(1)'  $\varrho(x, y) = 0^{\sim}$  if x = y

then it is called an *L-pseudo-metric* on *X*.

A set X equipped with an L-pseudo-metric (L-metric)  $\varrho$  on X is called an L-pseudo-metric (L-metric) space.

To each *L*-pseudo-metric (*L*-metric)  $\varrho$  on a set *X* is generated canonically a stratified *L*-topology  $\tau_{\varrho}$  on *X* which has  $\{\varepsilon \circ \varrho_x | \varepsilon \in \mathcal{E}, x \in X\}$  as a base, where  $\varrho_x : X \to \mathbf{R}_L^*$  is the mapping defined by  $\varrho_x(y) = \varrho(x, y)$  and

$$\mathcal{E} = \{ \bar{\alpha} \wedge R^{\delta} |_{\mathbf{R}^*_{+}} | \delta > 0, \alpha \in L \} \cup \{ \bar{\alpha} | \alpha \in L \},\$$

here  $\bar{\alpha}$  has  $\mathbf{R}_L^*$  as domain.

An L-topological space  $(X, \tau)$  is called *pseudo-metrizable* (*metrizable*) if there is an L-pseudo-metric (L-metric)  $\varrho$  on X inducing  $\tau$ , that is,  $\tau = \tau_{\varrho}$ .

An L-pseudo-metric g is called left (right) invariant if

 $\varrho(x, y) = \varrho(ax, ay)(\varrho(x, y) = \varrho(xa, ya))$  for all  $a, x, y \in X$ .

An L-set  $\lambda \in L^X$  is called *countable (finite)* if its support is countable (finite), where the support of  $\lambda$  is the set  $\{x \in X \mid 0 < \lambda(x)\}$ .

Let us call an *L*-filter  $\mathcal{M}$  on a set *X* countable if the sets  $\alpha - \operatorname{pr}\mathcal{M}$  are countable for all  $\alpha \in L_0$ .

**Definition 3.1.** An *L*-topological space  $(X, \tau)$  is called *first countable* if every point  $x \in X$  has a countable *L*-neighborhood filter  $\mathcal{N}(x)$ .

**Proposition 3.1.** For any L-pseudo-metric Q on a set X, if  $\tau_Q$  is the L-topology associated with Q, then  $(X, \tau_Q)$  is a first countable space.

**Proof.** Since  $\{\varepsilon \circ \varrho_x | \varepsilon \in \mathcal{E}, x \in X\}$  is a base for  $\tau_{\varrho}$ , then for all  $n \in \mathbb{N}$ , the set  $B_n = \{\varepsilon_n \circ \varrho_x | \varepsilon_n \in \mathcal{E}, x \in X\}$ , where  $\varepsilon_n = \frac{1}{n} \wedge R^{\delta}|_{\mathbf{R}^*_L}$ , is the  $\frac{1}{n} - \operatorname{pr} \mathcal{N}(x)$ , which implies that there exists a countable *L*-neighborhood filter  $\mathcal{N}(x)$  at every point  $x \in X$ . Hence,  $(X, \tau_{\varrho})$  is a first countable space.  $\Box$ 

By an *L*-function family  $\Phi$  on a set *X*, we mean the set of all *L*-real functions  $f: X \to I_L$ .

We also have the following results.

**Lemma 3.1.** Let  $\Phi$  be an L-function family on X and  $\sigma_{f}$ :  $X \times X \rightarrow I_L$  a mapping defined by

$$\sigma_f(x, y) = (f(x) - f(y))^+, \quad f \in \Phi$$

Then  $\sigma_f$  is an L-pseudo-metric on X.

**Proof.** Clearly,  $\sigma_f(x, y) = \sigma_f(y, x)$ . From (2.1), we get that  $\sigma_f(x, x) = (f(x) - f(x))^+ = 0^{\sim}$  for all  $x \in X$ , and moreover

$$\sigma_f(x, y) = (f(x) - f(y))^+ \leq (f(x) - f(z))^+ + (f(z) - f(y))^-$$
  
=  $\sigma_f(x, z) + \sigma_f(z, y).$ 

Hence,  $\sigma_f$  is an *L*-pseudo-metric on *X*.  $\Box$ 

**Lemma 3.2.** Let  $\sigma_i: X \times X \rightarrow I_L$ ,  $i \in I$  be an arbitrary set of *L*-pseudo-metrics on the set *X*. Then

$$\sigma(x, y) = \sup\{\sigma_i(x, y) | i \in I\}$$

defines an L-pseudo-metric on X as well.

**Proof.** Only the triangle inequality has to be shown. For all *x*, *y*,  $z \in X$  and all  $i \in I$ , we have

 $\sigma_i(x, y) \leqslant \sigma_i(x, z) + \sigma_i(z, y) \leqslant \sigma(x, z) + \sigma(z, y),$ 

and then  $\sigma(x, y) \leq \sigma(x, z) + \sigma(z, y)$ . Hence,  $\sigma$  is an *L*-pseudometric on *X*.  $\Box$ 

Here, we have shown this fact.

**Lemma 3.3.** Any L-pseudo-metric  $\varrho$  on a set X is an L-metric on X if and only if  $(X, \tau_{\varrho})$  is a  $GT_0$ -space.

**Proof.** Let  $x, y \in X$  and  $y \neq x$ . Since  $(X, \tau_{\varrho})$  is a  $GT_0$ -space, then there exists  $\mu \in L^X$  such that  $\mu(x) < \beta \leq \operatorname{int}_{\tau_{\varrho}} \mu(y)$  for some  $\beta \in L_0$ . From the definition of the base of  $\tau_{\varrho}$ , since

$$\operatorname{int}_{\tau_{\varrho}}\mu(z) = \bar{\alpha} \wedge R^{\delta}|_{\mathbf{R}^{\delta}_{L}}(\varrho(x,z)) = \alpha \wedge (\bigvee_{\eta \ge \delta} \varrho(x,z)(\eta))^{\ell}$$

for all  $z \in X$  and for some  $\alpha \in L$ , then  $\varrho(x, y) = 0^{\sim}$  implies that  $\operatorname{int}_{\tau_{\theta}} \mu(y) = \alpha \wedge 1 = \alpha$  for all  $y \in X$  and all  $\mu \in L^{X}$ . Hence,

 $\alpha = \operatorname{int}_{\tau_{\alpha}} \mu(x) \leqslant \mu(x) < \beta \leqslant \operatorname{int}_{\tau_{\alpha}} \mu(y) = \alpha,$ 

that is,  $\alpha < \beta \leq \alpha$  which is a contradiction, and thus x = y and  $\varrho$  is an *L*-metric.

Now let  $x \neq y$  and so  $\varrho(x, y) \neq 0^{\sim}$ , then there exists  $\alpha > 0$ such that  $\varrho(x, y)(\alpha) > 0$  and hence taking  $v = \overline{1} \wedge R^{\delta}|_{\mathbf{R}^{*}_{\tau}} \circ \varrho_{x} \in L^{X}$ , we get that

$$v(y) = 1 \wedge \mathbf{R}^{\delta}(\varrho(x, y)) = 1 \wedge (\bigvee_{\eta \ge \delta} \varrho(x, z)(\eta))' < 1$$

whenever  $\delta$  is chosen to be a very small number tends to zero. But  $\operatorname{int}_{\tau_{\varrho}} v(x) = 1 \wedge (\bigvee_{\eta \ge \delta} \varrho(x, x)(\eta))' = 1$ . Hence,  $(X, \tau_{\varrho})$  is a  $GT_0$ -space.  $\Box$ 

# 4. On L-uniform spaces

An *L*-filter  $\mathcal{U}$  on  $X \times X$  is called *L*-uniform structure on *X* [5] if the following conditions are fulfilled:

(U1) 
$$(x,x)$$
  $\succ \mathcal{U}$  for all  $x \in X$ ;

(U2)  $\mathcal{U} = \mathcal{U}^{-1}$ ; (U3)  $\mathcal{U} \circ \mathcal{U} \succ \mathcal{U}$ .

Where (x, x)(u) = u(x, x),  $\mathcal{U}^{-1}(u) = \mathcal{U}(u^{-1})$  and  $(\mathcal{U} \circ \mathcal{U})(u) = \bigvee_{v \circ w \leq u} (\mathcal{U}(w) \land \mathcal{V}(v))$  for all  $u \in L^{X \times X}$ , and  $u^{-1}(x, y) = u(y, x)$  and  $(v \circ w)(x, y) = \bigvee_{z \in X} (w(x, z) \land v(z, y))$  for all  $x, y \in X$ .

A set X equipped with an L-uniform structure  $\mathcal{U}$  is called an L-uniform space. A mapping  $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$  between L-uniform spaces  $(X, \mathcal{U})$  and  $(Y, \mathcal{V})$  is said to be L-uniformly continuous (or  $(\mathcal{U}, \mathcal{V})$ -continuous) provided

$$\mathcal{F}_L(f \times f)(\mathcal{U}) \succ \mathcal{V}$$

holds. To each *L*-uniform structure  $\mathcal{U}$  on *X* is associated a stratified *L*-topology  $\tau_{\mathcal{U}}$ . The related interior operator  $\operatorname{int}_{\mathcal{U}}$  is given by:

 $(\operatorname{int}_{\mathcal{U}}\lambda)(x) = \mathcal{U}[\dot{x}](\lambda)$ 

for all  $x \in X$  and all  $\lambda \in L^X$ , where  $\mathcal{U}[\dot{x}](\lambda) = \bigvee_{u[\mu] \leq \lambda} (\mathcal{U}(u) \land \mu(x))$  and  $u[\mu](x) = \bigvee_{y \in X} (\mu(y) \land u(y, x))$ . For all  $x \in X$  and all  $\lambda \in L^X$  we have

$$\mathcal{U}[\dot{x}] = \mathcal{N}(x) \text{ and } \mathcal{U}[\dot{\lambda}] = \mathcal{N}(\lambda),$$

where  $\mathcal{N}(x)$  and  $\mathcal{N}(\lambda)$  are the *L*-neighborhood filters of the space  $(X, \tau_{\mathcal{U}})$  at *x* and  $\lambda$ , respectively.

Let  $\mathcal{U}$  be an *L*-uniform structure on a set *X*. Then  $u \in L^{X \times X}$  is called a *surrounding* provided  $\mathcal{U}(u) \ge \alpha$  for some  $\alpha \in L_0$  and  $u = u^{-1}$ . A surrounding  $u \in L^{X \times X}$  is called *left (right) invariant* provided

$$u(ax, ay) = u(x, y)(u(xa, ya) = u(x, y))$$
 for all  $a, x, y \in X$ .

 $\mathcal{U}$  is called a *left* (*right*) *invariant L*-uniform structure if  $\mathcal{U}$  has a valued *L*-filter base consists of left (right) invariant surroundings [4].

*L*-topological groups. In the following we focus our study on a multiplicative group *G*. We denote, as usual, the identity element of *G* by *e* and the inverse of an element *a* of *G* by  $a^{-1}$ . Let *G* be a group and  $\tau$  an *L*-topology on *G*. Then  $(G, \tau)$  will be called an *L*-topological group [2] if the mappings

$$\pi: (G \times G, \tau \times \tau) \to (G, \tau)$$
 defined by  $\pi(a, b) = ab$  for all  $a, b \in G$ 

and

$$i: (G, \tau) \to (G, \tau)$$
 defined by  $i(a) = a^{-1}$  for all  $a \in G$ 

are *L*-continuous.  $\pi$  and *i* are the binary operation and the unary operation of the inverse on *G*, respectively.

For all  $\lambda \in L^G$ , the inverse  $\lambda^i$  of  $\lambda$  with respect to the unary operation *i* on *G* is the *L*-set  $\lambda \circ i$  in *G* defined by [4]

$$\lambda^i(x) = \lambda(x^{-1})$$
 for all  $x \in G$ .

**Example 4.1.** For a group G, the induced L-topological space  $(G, \omega_L(T))$  of the usual topological group (G, T) is an L-topological group.

**Proposition 4.1.** [4] Let  $(G, \tau)$  be an L-topological group. Then there exist on G a unique left invariant L-uniform structure  $\mathcal{U}^{l}$ and a unique right invariant L-uniform structure  $\mathcal{U}^{r}$  compatible with  $\tau$ , constructed using the family  $(\alpha - \operatorname{pr} \mathcal{N}(e))_{\alpha \in L_{0}}$  of all filters  $\alpha - \operatorname{pr} \mathcal{N}(e)$ , where  $\mathcal{N}(e)$  is the L-neighborhood filter at the identity element e of  $(G, \tau)$ , as follows:

$$\mathcal{U}^{l}(u) = \bigvee_{v \in \mathcal{U}^{l}_{\alpha}, v \leq u} \quad and \quad \mathcal{U}^{r}(u) = \bigvee_{v \in \mathcal{U}^{r}_{\alpha}, v \leq u} \alpha, \tag{4.1}$$

where

$$\mathcal{U}_{\alpha}^{l} = \alpha - \operatorname{pr} \mathcal{U}^{l} \quad and \quad \mathcal{U}_{\alpha}^{r} = \alpha - \operatorname{pr} \mathcal{U}^{r}$$

$$(4.2)$$

are defined by

$$\mathcal{U}_{\alpha}^{l} = \{ u \in L^{G \times G} | u(x, y) = (\lambda \wedge \lambda^{i})(x^{-1}y) \text{ for some } \lambda$$
  
$$\in \alpha - \operatorname{pr} \mathcal{N}(e) \}$$
(4.3)

and

$$\mathcal{U}_{\alpha}^{r} = \{ u \in L^{6 \times 6} | u(x, y) = (\lambda \wedge \lambda^{r})(xy^{-1}) \text{ for some } \lambda \\ \in \alpha - \operatorname{pr} \mathcal{N}(e) \}$$

$$(4.4)$$

We should notice that we shall fix the notations  $\mathcal{U}^{l}$ ,  $\mathcal{U}^{r}$ ,  $\mathcal{U}^{l}_{\alpha}$  and  $\mathcal{U}^{r}_{\alpha}$  along the paper to be these defined above.

**Remark 4.1.** For the *L*-topological group  $(G, \tau)$ , the elements *u* of  $\mathcal{U}^{l}_{\alpha}(\mathcal{U}^{r}_{\alpha})$  are left (right) invariant surroundings. Moreover,  $(\mathcal{U}^{l}_{\alpha})_{\alpha \in L_{0}}((\mathcal{U}^{r}_{\alpha})_{\alpha \in L_{0}})$  is a valued *L*-filter base for the left (right) invariant *L*-uniform structure  $\mathcal{U}^{l}(\mathcal{U}^{r})$  defined by (4.1), (4.2), (4.3), (4.4), respectively.

*L*-topogenous orders. A binary relation on  $L^X$  is said to be an *L*-topogenous order on X [13] if the following conditions are fulfilled:

- (1)  $\overline{0} \ll \overline{0}$  and  $\overline{1} \ll \overline{1}$ ;
- (2)  $\lambda \ \mu$  implies  $\lambda \leq \mu$ ;
- (3)  $\lambda_1 \leq \lambda \ \mu \leq \mu_1$  implies  $\lambda_1 \ \mu_1$ ;
- (4) From  $\lambda_1 \ \mu_1$  and  $\lambda_2 \ \mu_2$  it follows  $\lambda_1 \lor \lambda_2 \ \mu_1 \lor \ \mu_2$  and  $\lambda_1 \land \lambda_2 \ \mu_1 \land \mu_2$ .

An *L*-topogenous order is said to be *regular* or is said to be an *L*-topogenous structure if for all  $\lambda$ ,  $\mu \in L^X$  with  $\lambda \mu$  there is a  $v \in L^X$  such that  $\lambda v$  and  $v \mu$  hold, and is called *complementarily symmetric* if  $\lambda \mu$  implies  $\mu' \ \lambda'$  for all  $\lambda, \mu \in L^X$  and moreover is called *perfect* if for each family  $(\lambda_i)_{i \in I}$  of *L*-subsets of *X* with  $\lambda_i \mu$  for all  $i \in I$  it follows  $\bigvee \lambda_i \ll \mu$ .

Let (*n*) be a sequence of *L*-topogenous structures on *X* and  $(\prec_n)$  a sequence of *L*-topogenous structures on  $I_L$ . Then an *L*-real function  $f: X \to I_L$  is said to be *associated with* the sequence (*n*) if for all  $\lambda, \mu \in L^{I_L}, \lambda \prec n\mu$  implies  $(\lambda \circ f)_{n+1}(\mu \circ f)$  for every positive integer *n* [11].

Now, suppose that  $(G, \tau)$  has a countable *L*-neighborhood filter  $\mathcal{N}(e)$  at the identity *e*. Since any *L*-topological group, from Proposition 4.1, is uniformizable, then the left and the right invariant *L*-uniform structures  $\mathcal{U}'$  and  $\mathcal{U}'$ , constructed also in Proposition 4.1, has, from Remark 4.1, a countable *L*-filter base  $\mathcal{U}_{1}'$  and  $\mathcal{U}_{1}'$ , respectively,  $n \in \mathbb{N}$ .

**Lemma 4.1.** [18] For all  $\lambda$ ,  $\mu \in L^X$ , we have  $\lambda \leq \mu$  if and only if  $\dot{\lambda} \succ \dot{\mu}$ .

Here, we prove this interesting result.

**Lemma 4.2.** Let  $\mathcal{U}$  be an *L*-uniform structure on a set X, and define a binary relation on  $L^X$  as follows:

$$\lambda \ll_{\mathcal{U}} \mu \Longleftrightarrow \mathcal{U}[\lambda] \succ \dot{\mu}$$

for all  $\lambda, \mu \in L^X$ . Then  $\ll_{\mathcal{U}}$  is a complementarily symmetric perfect L-topogenous order on X.

**Proof.** From the properties of  $\mathcal{U}$  as an *L*-filter, (2.1) and Lemma 4.1 we get easily that  $\ll_{\mathcal{U}}$  fulfills all the required conditions.  $\Box$ 

**Proposition 4.2.** [13] There is a one-to-one correspondence between the perfect L-topogenous structures on a set X and the L-topologies  $\tau$  on X. This correspondence is given by

$$\lambda \ll \mu \iff \lambda \leqslant v \leqslant \mu$$
 for some  $v \in \tau$ 

for all  $\lambda, \mu \in L^X$  and

 $\tau = \{\lambda \in L^X | \lambda \ll \lambda\}.$ 

Now we have the following result.

**Proposition 4.3.** Suppose that  $\mathcal{U}$  and  $\left(\mathcal{U}_{\frac{1}{n}}\right)_{n\in\mathbb{N}}$  are an L-uniform structure on X and its countable L-filter base, respectively, and also consider  $\mathcal{V}$  an L-uniform structure on  $I_L$ . Let  $(n)_{n\in\mathbb{N}}$  denote a sequence of complementarily symmetric perfect L-topogenous structures on X for which  $\lambda \ll_n \mu \iff \mathcal{U}[\lambda] \succ \mu$  for all  $\lambda, \mu \in L^X$ ,

structures on X for which  $\lambda \ll_n \mu \iff \mathcal{U}[\lambda] \succ \mu$  for all  $\lambda, \mu \in L$ , and let  $\Phi$  be the family of all L-uniformly continuous functions  $h: (X, \mathcal{U}) \to (I_L, \mathcal{V})$  associated with  $({}_n)_{n \in \mathbb{N}}$ . Then the mapping  $\sigma_{\mathcal{U}}: X \times X \to I_L$  defined by

$$\sigma_{\mathcal{U}}(x, y) = \sup \{\sigma_f(x, y) | f \in \Phi\}$$

where  $\sigma_f(x, y) = (f(x) - f(y))^+$  for all  $x, y \in X$ , is an L-pseudo-metric on X and  $\tau_{\mathcal{U}} = \tau_{\sigma_{\mathcal{U}}}$ .

**Proof.** The proof of that  $\sigma_{\mathcal{U}}$  is an *L*-pseudo-metric on *X* comes from Lemmas 3.1, 3.2, and 4.2.

Since for any  $\lambda \in L^X$ , and from Proposition 4.2

 $\lambda \ll_n \lambda \iff \mathcal{U}[\dot{\lambda}] \succ \dot{\lambda}$ 

means that  $\lambda \in \tau_{\mathcal{U}}$  if and only if  $\lambda \in \tau_{\sigma_{\mathcal{U}}}$ , where  $\sigma_{\mathcal{U}}$  is generated by all the *L*-pseudo-metrics  $\sigma_h$  for every *h* associated with *n*. Hence,  $\tau_{\mathcal{U}} = \tau_{\sigma_{\mathcal{U}}}$ .  $\Box$ 

# 5. The metrizability of L-topological groups

This section is devoted to show that any (separated) *L*-topological group is pseudo-metrizable (metrizable).

An *L*-topological group  $(G, \tau)$  is called *separated* if for the identity element *e*, we have  $\bigwedge_{\lambda \in \alpha - \operatorname{pr}\mathcal{N}(e)} \lambda(e) \ge \alpha$ , and  $\bigwedge_{\lambda \in \alpha - \operatorname{pr}\mathcal{N}(e)} \lambda(x) < \alpha$  for all  $x \in G$  with  $x \neq e$  and for all  $\alpha \in L_0$  [4].

**Proposition 5.1.** [4] Any (separated) L-topological group is a  $(GT_{3l}$ -space) completely regular space.

Now, we are going to show the main result in this paper.

**Proposition 5.2.** Any (separated) L-topological group  $(G, \tau)$  is pseudo-metrizable (metrizable).

**Proof.** From Proposition 4.1, we have unique left and unique right *L*-uniform structures  $\mathcal{U}^l$  and  $\mathcal{U}^r$  on *G* defined by (4.1) such that  $\tau = \tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r}$ . Proposition 4.3 implies that  $\tau = \tau_{\mathcal{U}^l} = \tau_{\sigma_{\mathcal{U}^r}}$  and  $\tau = \tau_{\mathcal{U}^r} = \tau_{\sigma_{\mathcal{U}^r}}$ , and therefore  $(G, \tau)$  is pseudo-metrizable.

Also, if  $(G, \tau)$  is separated, then from Proposition 5.1, we get that  $(G, \tau)$  is a  $GT_0$ -space, and hence, from Lemma 3.3, we have that  $(G, \tau)$  is metrizable.  $\Box$ 

We also have the following important result.

**Proposition 5.3.** Let  $(G, \tau)$  be a (separated) L-topological group. Then the following statements are equivalent.

- (1)  $\tau$  is pseudo-metrizable (metrizable);
- (2) *e* has a countable *L*-neighborhood filter  $\mathcal{N}(e)$ ;
- (3) τ can be induced by a left invariant L-pseudo-metric (Lmetric);
- (4) τ can be induced by a right invariant L-pseudo-metric (L-metric).

**Proof.** (1)  $\Rightarrow$  (2): Follows from Proposition 3.1

 $(2) \Rightarrow (3)$ : Let *e* has a countable *L*-neighborhood filter  $\mathcal{N}(e)$ , and let  $\mathcal{U}_{1}^{l}$  be a countable *L*-filter base of the left invariant L-uniform structure  $\mathcal{U}^l$ , defined by (4.1), which is compatible with  $\tau$ . Then, from Lemma 4.2,  $\lambda \ll_{\mathcal{U}} \mu \iff \mathcal{U}^{l}[\dot{\lambda}] \succ \dot{\mu}$  for all  $\lambda, \mu \in L^{G}$  defines a sequence of complementarily symmetric perfect L-topogenous structures on G. Taking V as an L-uniform structure on  $I_L$  and  $\Phi$  as the family of all L-uniformly continuous functions  $h: (G, \mathcal{U}^l) \to (I_L, \mathcal{V})$  associated with  $\ll_{\mathcal{U}^l}$ , we get, from Proposition 4.3, that the *L*-mapping  $\sigma: G \times G \to I_L$  defined by  $\sigma(x, x)$  $y = \sup\{(f(x) - f(y))^+ | f \in \Phi\}$  is an L-pseudo-metric on G and  $\tau = \tau_{\mathcal{U}^l} = \tau_{\sigma_{\mathcal{U}^l}}.$ 

Now, we define  $h_a: G \to I_L$  by  $h_a(x) = h(a \ x)$  for all a,  $x \in G$ . From  $h \in \Phi$  is *L*-uniformly continuous, that is,  $\mathcal{F}_L(h \times h)(\mathcal{U}^l) \succ \mathcal{V}$  and that the elements of  $\mathcal{U}_1^l$  are left invariant from Remark 4.1, and from (4.1), we have

$$\mathcal{F}_{L}(h_{a} \times h_{a})\mathcal{U}^{l}(v) = \mathcal{U}^{l}(v \circ (h_{a} \times h_{a}))$$

$$= \bigvee_{u \in \mathcal{U}_{\underline{h}}^{l}, u \leq v \circ (h_{a} \times h_{a})} \frac{1}{n}$$

$$= \bigvee_{u \in \mathcal{U}_{\underline{h}}^{l}, u \leq v \circ (h \times h)} \frac{1}{n}$$

$$= \mathcal{F}_{L}(h \times h)\mathcal{U}^{l}(v)$$

$$\geqslant \mathcal{V}(v).$$

Hence,  $h_a$  is *L*-uniformly continuous associated with  $\ll_{\mathcal{U}}$ , that is,  $h_a \in \Phi$ . Thus

$$\sigma(ax, ay) = \sup\{(h(ax) - h(ay))^+ | h \in \Phi\}$$
  
= sup{ $(h_a(x) - h_a(y))^+ | h \in \Phi\}$   
 $\leq$  sup { $(k(x) - k(y))^+ | k \in \Phi\}$   
=  $\sigma(x, y).$ 

Applying the same for  $a^{-1}$  instead of *a*, we get that  $\sigma(x, y) = \sigma(a^{-1}a \ x, a^{-1}a \ y) \leq \sigma(a \ x, a \ y)$ . That is,  $\sigma(a \ x, a \ y) = \sigma(x, y)$  for all *a*, *x*,  $y \in G$  and then  $\sigma$  is a left invariant *L*-pseudo-metric on *G* inducing  $\tau$ .

(2)  $\Rightarrow$  (4): By a similar proof as in the case (2)  $\Rightarrow$  (3).

 $(3) \Rightarrow (1)$  and  $(4) \Rightarrow (1)$ : Obvious.

The proposition is still true if we consider the parentheses.  $\Box$ 

**Example 5.1.** From Proposition 5.2, we can deduce that any *L*-topological group  $(G, \tau)$  on which there can be constructed an *L*-uniform structure  $\mathcal{U}$  compatible with  $\tau$  is pseudo-metrizable in general and is metrizable whenever  $(G, \tau)$  is separated.

# Acknowledgement

The authors appreciate the reviewers for their valuable comments and suggestions.

#### References

- S. G\u00e4hler, W. G\u00e4hler, Fuzzy real numbers, Fuzzy Sets and Systems 66 (1994) 137–158.
- [2] T.M.G. Ahsanullah, On *L*-neighborhood groups, Journal of Mathematical Analysis and Applications 130 (1988) 237–251.
- [3] F. Bayoumi, On initial and final L-topological groups, Fuzzy Sets and Systems 156 (2005) 43–54.
- [4] F. Bayoumi, I. Ibedou, The uniformizability of *L*-topological groups, Journal of Fuzzy Mathematics 17 (1) (2009) 35–52.

- [5] W. Gähler, F. Bayoumi, A. Kandil, A. Nouh, The theory of global *L*-neighborhood structures, III, fuzzy uniform structures, Fuzzy Sets and Systems 98 (1998) 175–199.
- [6] P. Eklund, W. G\u00e4hler, Fuzzy filter functors and convergence, in: Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht, 1992, pp. 109–136.
- [7] W. Gähler, The general *L*-filter approach to *L*-topology, I, Fuzzy Sets and Systems 76 (1995) 205–224.
- [8] W. Gähler, The general *L*-filter approach to *L*-topology, II, Fuzzy Sets and Systems 76 (1995) 225–246.
- [9] F. Bayoumi, I. Ibedou, T<sub>i</sub>-spaces, I, The Journal of The Egyptian Mathematical Society 10 (2002) 179–199.
- [10] F. Bayoumi, I. Ibedou, T<sub>i</sub>-spaces, II, The Journal of The Egyptian Mathematical Society 10 (2002) 201–215.
- [11] F. Bayoumi, I. Ibedou, GT<sub>31</sub>-spaces, I, Journal of the Egyptian Mathematical Society 14 (2) (2006) 243–264.
- [12] F. Bayoumi, I. Ibedou, GT<sub>31</sub>-spaces, II, Journal of the Egyptian Mathematical Society 14 (2) (2006) 265–282.
- [13] A.K. Katsaras, C.G. Petalas, On *L*-syntopogenous structures, Journal of Mathematical Analysis and Applications 99 (1984) 219–236.
- [14] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338– 353.
- [15] R. Lowen, Convergence in *L*-topological spaces, General Topology and Applications 10 (1979) 147–160.
- [16] C.H. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications 24 (1968) 182–190.
- [17] J.A. Goguen, L-sets, Journal of Mathematical Analysis and Applications 18 (1967) 145–174.
- [18] F. Bayoumi, I. Ibedou, The relation between the *GT*<sub>i</sub>-spaces and *L*-proximity spaces, *G*-compact spaces, *L*-uniform spaces, The Journal of Chaos, Solitons and Fractals 20 (2004) 955–966.